
Journal of Statistical Physics, Vol. 103, Nos. 1�2, 2001

Reliable Cellular Automata with Self-Organization

Peter Ga� cs1

Received December 6, 1996; final April 14, 2000

In a probabilistic cellular automaton in which all local transitions have positive
probability, the problem of keeping a bit of information indefinitely is non-
trivial, even in an infinite automaton. Still, there is a solution in 2 dimensions,
and this solution can be used to construct a simple 3-dimensional discrete-time
universal fault-tolerant cellular automaton. This technique does not help much
to solve the following problems: remembering a bit of information in 1 dimen-
sion; computing in dimensions lower than 3; computing in any dimension with
non-synchronized transitions. Our more complex technique organizes the cells
in blocks that perform a reliable simulation of a second (generalized) cellular
automaton. The cells of the latter automaton are also organized in blocks,
simulating even more reliably a third automaton, etc. Since all this (a possibly
infinite hierarchy) is organized in ``software,'' it must be under repair all the time
from damage caused by errors. A large part of the problem is essentially self-
stabilization recovering from a mess of arbitrary size and content. The present
paper constructs an asynchronous one-dimensional fault-tolerant cellular
automaton, with the further feature of ``self-organization.'' The latter means that
unless a large amount of input information must be given, the initial configura-
tion can be chosen homogeneous.

KEY WORDS: Probabilistic cellular automata; interacting particle systems;
renormalization; ergodicity; reliability; fault-tolerance; error-correction; simula-
tion; hierarchy; self-organization.

CONTENTS

1. Introduction 47
1.1. Historical remarks 48
1.2. Hierarchical constructions 49
2. Cellular automata 54
2.1. Deterministic cellular automata 54

45

0022-4715�01�0400-0045�19.50�0 � 2001 Plenum Publishing Corporation

1 Computer Science Department, Boston University, Boston, Massachusetts 02215-2411;
e-mail: gacs�bu.edu; www.arxiv.org�abs�math.PR�0003117

2.2. Fields of a local state 56
2.3. Probabilistic cellular automata 59
2.4. Continuous-time probabilistic cellular automata 60
2.5. Perturbation 61
3. Codes 62
3.1. Colonies 62
3.2. Block codes 64
3.3. Generalized cellular automata (abstract media) 66
3.4. Block simulations 69
3.5. Single-fault-tolerant block simulation 72
3.6. General simulations 73
3.7. Remembering a bit: proof from an amplifier assumption 77
4. Hierarchy 78
4.1. Hierarchical codes 78
4.2. The active level 92
4.3. Major difficulties 94
5. Main theorems in discrete time 96
5.1. Relaxation time and ergodicity 96
5.2. Information storage and computation in various dimensions 101
6. Media 105
6.1. Trajectories 106
6.2. Canonical simulations 111
6.3. Primitive variable-period media 115
6.4. Main theorems (continuous time) 117
6.5. Self-organization 118
7. Some simulations 119
7.1. Simulating a cellular automaton by a variable-period medium 119
7.2. Functions defined by programs 123
7.3. The rule language 125
7.4. A basic block simulation 130
8. Robust media 136
8.1. Damage 137
8.2. Computation 140
8.3. Simulating a medium with a larger reach 146
9. Amplifiers 146
9.1. Amplifier frames 146
9.2. The existence of amplifiers 153
9.3. The application of amplifiers 154
10. Self-organization 159
10.1. Self-organizing amplifiers 159
10.2. Application of self-organizing amplifiers 161
11. General plan of the program 163
11.1. Damage rectangles 165
11.2. Timing 166
11.3. Cell kinds 167
11.4. Refreshing 168
11.5. A colony work period 169
11.6. Local consistency 171
11.7. Plan of the rest of the proof 173
12. Killing and creation 175

46 Ga� cs

12.1. Edges 175
12.2. Killing 176
12.3. Creation, birth, and arbitration 177
12.4. Animation, parents, growth 180
12.5. Healing 183
12.6. Continuity 185
13. Gaps 188
13.1. Paths 189
13.2. Running gaps 192
14. Attribution and progress 199
14.1. Non-damage gaps are large 199
14.2. Attribution 204
14.3. Progress 208
15. Healing 209
15.1. Healing a gap 209
16. Computation and legalization 212
16.1. Coding and decoding 212
16.2. Refreshing 216
16.3. Computation rules 219
16.4. Finishing the work period 221
16.5. Legality 225
17. Communication 230
17.1. Retrieval rules 230
17.2. Applying the computation rules 235
17.3. The error parameters 240
18. Germs 242
18.1. Control 242
18.2. The program of a germ 246
18.3. Proof of self-organization 248
19. Some applications and open problems 257
19.1. Non-periodic Gibbs states 257
19.2. Some open problems 258
References 260
Notation 261
Index 264

1. INTRODUCTION

A cellular automaton is a homogenous array of identical, locally com-
municating finite-state automata. The model is also called interacting par-
ticle system. Fault-tolerant computation and information storage in cellular
automata is a natural and challenging mathematical problem but there are
also some arguments indicating an eventual practical significance of the
subject since there are advantages in uniform structure for parallel com-
puters.

Fault-tolerant cellular automata (FCA) belong to the larger category
of reliable computing devices built from unreliable components, in which

47Reliable Cellular Automata with Self-Organization

the error probability of the individual components is not required to
decrease as the size of the device increases. In such a model it is essential
that the faults are assumed to be transient: they change the local state but
not the local transition function.

A fault-tolerant computer of this kind must use massive parallelism.
Indeed, information stored anywhere during computation is subject to decay
and therefore must be actively maintained. It does not help to run two com-
puters simultaneously, comparing their results periodically since faults will
occur in both of them between comparisons with high probability. The self-
correction mechanism must be built into each part of the computer. In
cellular automata, it must be a property of the transition function of the cells.

Due to the homogeneity of cellular automata, since large groups of
errors can destroy large parts of any kind of structure, ``self-stabilization''
techniques are needed in conjunction with traditional error-correction.

1.1. Historical Remarks

The problem of reliable computation with unreliable components was
addressed in ref. 29 in the context of Boolean circuits. Von Neumann's
solution, as well as its improved versions in refs. 9 and 23, rely on high
connectivity and non-uniform constructs. The best currently known result
of this type is in ref. 25 where redundancy has been substantially decreased
for the case of computations whose computing time is larger than the
storage requirement.

Of particular interest to us are those probabilistic cellular automata in
which all local transition probabilities are positive (let us call such
automata noisy), since such an automaton is obtained by way of ``perturba-
tion'' from a deterministic cellular automaton. The automaton may have
e.g., two distinguished initial configurations: say !0 in which all cells have
state 0 and !1 in which all have state 1 (there may be other states besides
0 and 1). Let pi (x, t) be the probability that, starting from initial configura-
tion !i , the state of cell x at time t is i. If pi (x, t) is bigger than, say, 2�3
for all x, t then we can say that the automaton remembers the initial con-
figuration forever.

Informally speaking, a probabilistic cellular automaton is called mixing
if it eventually forgets all information about its initial configuration. Finite
noisy cellular automata are always mixing. In the example above, one can
define the ``relaxation time'' as the time by which the probability decreases
below 2�3. If an infinite automaton is mixing then the relaxation time of the
corresponding finite automaton is bounded independently of size. A mini-
mal requirement of fault-tolerance is therefore that the infinite automaton
be non-mixing.

48 Ga� cs

The difficulty in constructing non-mixing noisy one-dimensional
cellular automata is that eventually large blocks of errors which we might
call islands will randomly occur. We can try to design a transition function
that (except for a small error probability) attempts to decrease these
islands. It is a natural idea that the function should replace the state of
each cell, at each transition time, with the majority of the cell states in
some neighborhood. However, majority voting among the five nearest
neighbors (including the cell itself) seems to lead to a mixing transition
function, even in two dimensions, if the ``failure'' probabilities are not sym-
metric with respect to the interchange of 0's and 1's, and has not been
proved to be non-mixing even in the symmetric case. Perturbations of the
one-dimensional majority voting function were actually shown to be mixing
in refs. 16 and 17.

Non-mixing noisy cellular automata for dimensions 2 and higher were
constructed in ref. 27. These automata are also non-ergodic: an apparently
stronger property (see formal definition later). All our examples of non-
mixing automata will also be non-ergodic. The paper(14) applies Toom's
work(27) to design a simple three-dimensional fault-tolerant cellular
automaton that simulates arbitrary one-dimensional arrays. Toom's
original proof was simplified and adapted to strengthen these results in ref. 5.

Remark 1.1. A three-dimensional fault-tolerant cellular automaton
cannot be built to arbitrary size in the physical space. Indeed, there will be
an (inherently irreversible) error-correcting operation on the average in
every constant number of steps in each cell. This will produce a steady flow
of heat from each cell that needs therefore a separate escape route for each
cell.

A simple one-dimensional deterministic cellular automaton eliminating
finite islands in the absence of failures was defined in ref. 13 (see also ref. 8).
It is now known (see ref. 22) that perturbation (at least, in a strongly
biased way) makes this automaton mixing.

1.2. Hierarchical Constructions

The limited geometrical possibilities in one dimension suggest that
only some non-local organization can cope with the task of eliminating
finite islands. Indeed, imagine a large island of 1's in the 1-dimensional
ocean of 0's. Without additional information, cells at the left end of this
island will not be able to decide locally whether to move the boundary to
the right or to the left. This information must come from some global

49Reliable Cellular Automata with Self-Organization

organization that, given the fixed size of the cells, is expected to be
hierarchical. The ``cellular automaton'' in ref. 28 gives such a hierarchical
organization. It indeed can hold a bit of information indefinitely. However,
the transition function is not uniform either in space or time: the hierarchy
is ``hardwired'' into the way the transition function changes.

The paper(10) constructs a non-ergodic one-dimensional cellular autom-
aton working in discrete time, using some ideas from the very informal
paper(19) of Georgii Kurdyumov. Surprisingly, it seems even today that in
one dimension, the keeping of a bit of information requires all the organi-
zation needed for general fault-tolerant computation. The paper(11) con-
structs a two-dimensional fault-tolerant cellular automaton. In the two-
dimensional work, the space requirement of the reliable implementation of
a computation is only a constant times greater than that of the original
version. (The time requirement increases by a logarithmic factor.)

In both papers, the cells are organized in blocks that perform a fault-
tolerant simulation of a second, generalized cellular automaton. The cells
of the latter automaton are also organized in blocks, simulating even more
reliably a third generalized automaton, etc. In all these papers (including
the present one), since all this organization is in ``software,'' i.e., it is
encoded into the states of the cells, it must be under repair all the time
from breakdown caused by errors. In the two-dimensional case, Toom's
transition function simplifies the repairs.

1.2.1. Asynchrony

In the three-dimensional fault-tolerant cellular automaton of ref. 14,
the components must work in discrete time and switch simultaneously to
their next state. This requirement is unrealistic for arbitrarily large arrays.
A more natural model for asynchronous probabilistic cellular automata
is that of a continuous-time Markov process. This is a much stronger
assumption than allowing an adversary scheduler but it still leaves a lot of
technical problems to be solved. Informally it allows cells to choose
whether to update at the present time, independently of the choice their
neighbors make.

The paper(5) gives a simple method to implement arbitrary computa-
tions on asynchronous machines with otherwise perfectly reliable compo-
nents. A two-dimensional asynchronous fault-tolerant cellular automaton
was constructed in ref. 30. Experiments combining this technique with the
error-correction mechanism of ref. 14 were made, among others, in ref. 2.

The present paper constructs a one-dimensional asynchronous fault-
tolerant cellular automaton, thus completing the refutation of the so-called
Positive Rates Conjecture in ref. 20.

50 Ga� cs

1.2.2. Self-Organization

Most hierarchical constructions, including ours, start from a complex,
hierarchical initial configuration (in case of an infinite system, and infinite
hierarchy). The present paper offers some results which avoid this. E.g.,
when the computation's goal is to remember a constant amount of infor-
mation, (as in the refutation of the positive rates conjecture) then we will
give a transition function that performs this task even if each cell of the
initial configuration has the same state. We call this ``self-organization''
since hierarchical organization will still emerge during the computation.

1.2.3. Proof Method Simplification

Several methods have emerged that help managing the complexity of
a large construction, but the following two are the most important.

v A number of ``interface'' concepts is introduced (generalized simula-
tion, generalized cellular automaton) helping to separate the levels of the
infinite hierarchy, and making it possible to speak meaningfully of a single
pair of adjacent levels.

v Though the construction is large, its problems are presented one at
a time. E.g., the messiest part of the self-stabilization is the so-called
Attribution Lemma, showing how after a while all cells can be attributed
to some large organized group (colony), and thus no ``debris'' is in the way
of the creation of new colonies. This lemma relies mainly on the Purge and
Decay rules, and will be proved before introducing many other major rules.
Other parts of the construction that are not possible to ignore are used
only through ``interface conditions'' (specifications).

We believe that the new result and the new method of presentation
will serve as a firm basis for other new results. An example of a problem
likely to yield to the new framework is the growth rate of the relaxation
time as a function of the size of a finite cellular automaton. At present, the
relaxation time of all known cellular automata either seems to be bounded
(ergodic case) or grows exponentially. We believe that our constructions
will yield examples for other, intermediate growth rates.

1.2.4. Overview of the Paper

v Sections 2, 3, 4 are an informal discussion of the main ideas of the
construction, along with some formal definitions, e.g.,

�� block codes, colonies, hierarchical codes;

�� abstract media, which are a generalization of cellular automata;

�� simulations;

51Reliable Cellular Automata with Self-Organization

�� amplifiers: a sequence of media with simulations between each
and the next one.

v Section 5 formulates the main theorems for discrete time.
It also explains the main technical problems of the construction and

the ways to solve them:

�� correction of structural damage by destruction followed by rebuild-
ing from the neighbors;

�� a ``hard-wired'' program;

�� ``legalization'' of all locally consistent structures.

v Section 6 defines media, a specialization of abstract media with the
needed stochastic structure. Along with media, we will define canonical
simulations, whose form guarantees that they are simulations between
media. We will give the basic examples of media with the basic simulations
between them.

The section also defines variable-period media and formulates the
main theorems for continuous time.

v Section 7 develops some simple simulations, to be used either
directly or as a paradigm. The example transition function defined here will
correct any set of errors in which no two errors occur close to each other.

We also develop the language used for defining our transition function
in the rest of the paper.

v A class of media for which nontrivial fault-tolerant simulations exist
will be defined in Section 8. In these media, called ``robust media,'' cells are
not necessarily adjacent to each other. The transition function can erase as
well as create cells.

There is a set of ``bad'' states. The set of space-time points where bad
values occur is called the ``damage.'' The Restoration Property requires that
at any point of a trajectory, damage occurs (or persists) only with small
probability (=). The Computation Property requires that the trajectory
obey the transition function in the absence of damage.

It is possible to tell in advance how the damage will be defined in a
space-time configuration '* of a medium M2 simulated by some space-time
configuration ' of a medium M1 . Damage is said to occur at a certain
point (x, t) of '* if within a certain space-time rectangle in the past of
(x, t), the damage of ' cannot be covered by a small rectangle of a certain
size. This is saying, essentially, that damage occurs at least ``twice'' in '.
The Restoration Property for ' with = will then guarantee that the damage
in '* also satisfies a restoration property with with r=2.

v Section 9 introduces all notions for the formulation of the main
lemma. First we define the kind of amplifiers to be built and a set of

52 Ga� cs

parameters called the amplifier frame. The main lemma, called the
Amplifier Lemma, says that amplifiers exist for many different sorts of
amplifier frame. The rest of the section applies the main lemma to the proof
of the main theorems.

v Section 10 defines self-organizing amplifiers, formulates the lemma
about their existence and applies it to the proof of the existence of a self-
organizing non-ergodic cellular automaton.

v Section 11 gives an overview of an amplifier. As indicated above, the
restoration property will be satisfied automatically. In order to satisfy the
computation property, the general framework of the program will be
similar to the outline in Section 7. However, besides the single-error fault-
tolerance property achieved there, it will also have a self-stabilization
property. This means that a short time after the occurrence of arbitrary
damage, the configuration enables us to interpret it in terms of colonies.
(In practice, pieces of incomplete colonies will eliminate themselves.) In the
absence of damage, therefore, the colony structure will recover from the
effects of earlier damage, i.e. predictability in the simulated configuration is
restored.

v Section 12 gives the rules for killing, creation and purge. We prove
the basic lemmas about space-time paths connecting live cells.

v Section 13 defines the decay rule and shows that a large gap will eat
up a whole colony.

v Section 14 proves the Attribution Lemma that traces back each non-
germ cell to a full colony. This lemma expresses the ``self-stabilization''
property mentioned above. The proof starts with Subsection 14.1 showing
that if a gap will not be healed promptly then it grows.

v Section 15 proves the Healing Lemma, showing how the effect of a
small amount of damage will be corrected. Due to the need to restore some
local clock values consistently with the neighbors, the healing rule is rather
elaborate.

v Section 16 introduces and uses the error-correcting computation
rules not dependent on communication with neighbor colonies.

v Section 17 introduces and applies the communication rules needed
to prove the Computation Property in simulation. These are rather
elaborate, due to the need to communicate with not completely reliable
neighbor colonies asynchronously.

v Section 18 defines the rules for germs and shows that these make our
amplifier self-organizing.

53Reliable Cellular Automata with Self-Organization

The above constructions will be carried out for the case when the cells
work asynchronously (with variable time between switchings). This does
not introduce any insurmountable difficulty but makes life harder at several
steps: more care is needed in the updating and correction of the counter
field of a cell, and in the communication between neighbor colonies. The
analysis in the proof also becomes more involved.

2. CELLULAR AUTOMATA

In the introductory sections, we confine ourselves to one-dimensional
infinite cellular automata.

Notation. Let R be the set of real numbers, and Zm the set of
remainders modulo m. For m=�, this is the set Z of integers. We intro-
duce a non-standard notation for intervals on the real line. Closed intervals
are denoted as before: [a, b]=[x : a�x�b]. But open and half-closed
intervals are denoted as follows:

[a+, b]=[x : a<x�b],

[a, b&]=[x : a�x<b],

[a+, b&]=[x : a<x<b].

The advantage of this notation is that the pair (x, y) will not be confused
with the open interval traditionally denoted (x, y) and that the text editor
program will not complain about unbalanced parentheses. We will use the
same notation for intervals of integers: the context will make it clear,
whether [a, b] or [a, b] & Z is understood. Given a set A of space or
space-time and a real number c, we write

cA=[cv : v # A].

If the reader wonders why lists of assertions are sometimes denoted by (a),
(b),... and sometimes by (1), (2),..., here is the convention I have tried to
keep to. If I list properties that all hold or are required (conjunction) then
the items are labeled with (a), (b),... while if the list is a list of several
possible cases (disjunction) then the items are labeled with (1), (2),... .

Maxima and minima will sometimes be denoted by 6 and 7. We will
write log for log2 .

2.1. Deterministic Cellular Automata

Let us give here the most frequently used definition of cellular
automata. Later, we will use a certain generalization. The set C of sites has

54 Ga� cs

the form Zm for finite or infinite m. This will mean that in the finite case,
we take periodic boundary conditions. In a space-time vector (x, t), we will
always write the space coordinate first. For a space-time set E, we will
denote its space- and time projections by

?sE, ?t E (2.1)

respectively. We will have a finite set S of states, the potential states of
each site. A (space) configuration is a function

!(x)

for x # C. Here, !(x) is the state of site x.
The time of work of our cellular automata will be the interval

[0, �&]. Our space-time is given by

V=C_[0, �&].

A space-time configuration is a space-time function '(x, t) which for each t
defines a space configuration. If in a space-time configuration ' we have
'(x, v)=s2 and '(x, t)=s1{s2 for all t<v sufficiently close to v then we
can say that there was a switch from state s1 to state s2 at time v. For
ordinary discrete-time cellular automata, we allow only space-time con-
figurations in which all switching times are natural numbers 0, 1, 2,.... The
time 0 is considered a switching time. If there is an = such that '(c, t) is
constant for a&=<t<a then this constant value will be denoted by

'(c, a&). (2.2)

The subconfiguration !(D$) of a configuration ! defined on D#D$ is the
restriction of ! to D$. Sometimes, we write

'(V)

for the sub-configuration over the space-time set V.
A deterministic cellular automaton

CA(Tr, C)

is determined by a transition function Tr: S3 � S and the set C of sites. We
will omit C from the notation when it is obvious from the context. A space-
time configuration ' is a trajectory of this automaton if

'(x, t)=Tr('(x&1, t&1), '(x, t&1), '(x+1, t&1))

55Reliable Cellular Automata with Self-Organization

holds for all x, t with t>0. For a space-time configuration ' let us write

Tr(', x, t)=Tr('(x&1, t), '(x, t), '(x+1, t)). (2.3)

Given a configuration ! over the space C and a transition function, there
is a unique trajectory ' with the given transition function and the initial
configuration '(} , 0)=!.

2.2. Fields of a Local State

The space-time configuration of a deterministic cellular automaton can
be viewed as a ``computation.'' Moreover, every imaginable computation
can be performed by an appropriately chosen cellular automaton function.
This is not the place to explain the meaning of this statement if it is not
clear to the reader. But it becomes maybe clearer if we point out that a better
known model of computation, the Turing machine, can be considered a
special cellular automaton.

Let us deal, from now on, only with cellular automata in which the set
S of local states consists of binary strings of some fixed length &S& called
the capacity of the sites. Thus, if the automaton has 16 possible states then
its states can be considered binary strings of length 4. If &S&>1 then the
information represented by the state can be broken up naturally into parts.
It will greatly help reasoning about a transition rule if it assigns different
functions to some of these parts; a typical ``computation'' would indeed do
so. Subsets of the set [0,..., &S&&1] will be called fields. Some of these sub-
sets will have special names. Let

All=[0,..., &S&&1].

If s=(s(i) : i # All)) is a bit string and F=[i1 ,..., ik] is a field with ij<ij+1

then we will write

s .F=(s(i1),..., s(ik))

for the bit string that is called field F of the state.

Example 2.1. If the capacity is 12 we could subdivide the interval
[0, 11] into subintervals of lengths 2, 2, 1, 1, 2, 4 respectively and call these
fields the input, output, mail coming from left, mail coming from right,
memory and workspace. We can denote these as Input, Output, Mailj

(j=&1, 1), Work and Memory. If s is a state then s .Input denotes the first
two bits of s, s .Mail1 means the sixth bit of s, etc.

56 Ga� cs

Remark 2.2. Treating these fields differently means we may impose
some useful restrictions on the transition function. We might require the
following, calling Mail&1 the ``right-directed mail field:''

The information in Mail&1 moves always to the right. More precisely, in a trajec-
tory ', the only part of the state '(x, t) that depends on the state '(x&1, t&1) of
the left neighbor is the right-directed mail field '(x, t) .Mail&1 . This field, on the
other hand, depends only on the right-directed mail field of the left neighbor and
the workspace field '(x, t&1) .Work. The memory depends only on the workspace.

Confining ourselves to computations that are structured in a similar way
make reasoning about them in the presence of faults much easier. Indeed,
in such a scheme, the effects of a fault can propagate only through the mail
fields and can affect the memory field only if the workspace field's state
allows it.

Fields are generally either disjoint or contained in each other. When
we join e.g., the input fields of the different sites we can speak about the
input track, like a track of some magnetic tape.

2.2.1. Bandwidth and Separability

Here we are going to introduce some of the fields used later in the con-
struction. It is possible to skip this part without loss of understanding and
to refer to it later as necessary. However, it may show to computer scien-
tists how the communication model of cellular automata can be made more
realistic by introducing a new parameter w and some restrictions on tran-
sition functions. The restrictions do not limit information-processing
capability but

v limit the amount of information exchanged in each transition;

v limit the amount of change made in a local state in each transition;

v restrict the fields that depend on the neighbors immediately.

A transition function with such structure can be simulated in such a way
that only a small part of the memory is used for information processing,
most is used for storage. For a fixed bandwidth w, we will use the following
disjoint fields, all with size w:

Inbuf =[0, w&1], Outbuf, Pointer (2.4)

Let

Buf =Inbuf _ Outbuf, Memory=All"Inbuf

57Reliable Cellular Automata with Self-Organization

Note that the fields denoted by these names are not disjoint. For a transi-
tion function Tr: S3 � S, for an integer Wlog &S&X�w�&S&, we say that
Tr is separable with bandwidth w if there is a function

Tr(w): [0, 1]7w � [0, 1]5w (2.5)

determining Tr in the following way. For states r&1 , r0 , r1 , let a=r0 .Pointer,
(a binary number), then with

p=Tr(w)(r&1 .Buf, r0 . (Buf _ [a, a+w&1]), r1 .Buf) (2.6)

we define

Tr(r&1 , r0 , r1) . (Buf _ Pointer)= p . [0, 3w&1]. (2.7)

The value Tr(r&1 , r0 , r1) can differ from r0 only in Buf _ Pointer and in
field [n, n+w&1] where n= p . [4w, 5w&1] (interpreted as an integer in
binary notation) and then

Tr(r&1 , r0 , r1) .[n, n+w&1]= p . [3w, 4w&1]

It is required that only Inbuf depends on the neighbors directly:

Tr(r&1 , r0 , r1) .Memory=Tr(Vac, r0 , Vac) .Memory (2.8)

where Vac is a certain distinguished state. Let

legal Tr(u, v)={1
0

if v .Memory=Tr(Vac, u, Vac) .Memory,
otherwise.

Thus, sites whose transition function is separable with bandwidth w com-
municate with each other via their field Buf of size 2w. The transition func-
tion also depends on r0 . [a, a+w&1] where a=r0 .Pointer. It updates
r0 . (Buf _ Pointer) and r0 . [n+w&1] where n is also determined by Tr(w).

Remark 2.3. These definitions turn each site into a small ``random
access machine.''

When designing a cellular automaton with small bandwidth for
theoretical purposes, the guiding principle is to put almost everything into
Buf, so that we do not have to worry about communication with
neighbors. All the fields having to do with computation and administration
will be small. The only exception is the bulk of the information that the cell
is supposed to store. But even here, the redundant part of the information
used for error-correcting purposes will be small and can be in Buf.

58 Ga� cs

2.3. Probabilistic Cellular Automata

A random space-time configuration is a pair (+, ') where + is a prob-
ability measure over some measurable space (0, A) together with a
measurable function '(x, t, |) which is a space-time configuration for all
| # 0. We will generally omit | from the arguments of '. When we omit the
mention of + we will use Prob to denote it. If it does not lead to confusion,
for some property of the form [' # R], the quantity +[| : '(} , } , |) # R]
will be written as usual, as

+[' # R].

We will denote the expected value of f with respect to + by

E+ f

where we will omit + when it is clear from the context. A function f (') with
values 0, 1 (i.e., an indicator function) and measurable in A will be called
an event function over A. Let W be any subset of space-time that is the
union of some rectangles. Then

A(W)

denotes the _-algebra generated by events of the form

['(x, t)=s for t1�t<t2]

for s # S, (x, ti) # W. Let

At=A(C_[0, t]).

A probabilistic cellular automaton

PCA(P, C)

is characterized by saying which random space-time configurations are
considered trajectories. Now a trajectory is not a single space-time con-
figuration (sample path) but a distribution over space-time configurations
that satisfies the following condition. The condition depends on a transition
matrix P(s, (r&1 , r0 , r1)). For an arbitrary space-time configuration ', and
space-time point (x, t), let

P� (', s, x, t)=P(s, ('(x&1, t), '(x, t), '(x+1, t))). (2.9)

59Reliable Cellular Automata with Self-Organization

We will omit the parameter ' when it is clear from the context. The condi-
tion says that the random space-time configuration ' is a trajectory if and
only if the following holds. Let x0 ,..., xn+1 be given with xi+1=x i+1. Let
us fix an arbitrary space-time configuration ` and an arbitrary event H % `
of positive probability in At&1 . Then we require

Prob {,
n

i=1

['(xi , t)=`(xi , t)] } H & ,
n+1

i=0

['(x i , t&1)=`(x i , t&1)]=
= `

n

i=1

P� (', `(xi , t), x i , t&1).

A probabilistic cellular automaton is noisy if P(s, r)>0 for all s, r.
Bandwidth can be defined for transition probabilities just as for transition
functions.

Example 2.4. As a simple example, consider a deterministic cellular
automaton with a ``random number generator.'' Let the local state be a
record with two fields, Det and Rand where Rand consists of a single bit. In
a trajectory (+, '), the field ' .Det(x, t+1) is computed by a deterministic
transition function from '(x&1, t), '(x, t), '(x+1, t), while ' .Rand(x, t+1)
is obtained by ``coin-tossing.''

A trajectory of a probabilistic cellular automaton is a discrete-time
Markov process. If the set of sites consists of a single site then P(s, r) is the
transition probability matrix of this so-called finite Markov chain. The
Markov chain is finite as long as the number of sites is finite.

2.4. Continuous-Time Probabilistic Cellular Automata

For later reference, let us define here (1-dimensional) probabilistic
cellular automata in which the sites make a random decision ``in each
moment'' on whether to make a transition to another state or not. These
will be called continuous-time interacting particle systems. A systematic
theory of such systems and an overview of many results available in 1985
can be found in ref. 20. Here, we show two elementary constructions, the
second one of which is similar to the one in ref. 16. The system is defined
by a matrix R(s, r)�0 of transition rates in which all ``diagonal'' elements
R(r0 , (r&1 , r0 , r1)) are 0.

Consider a generalization PCA(P, B, $, C) of probabilistic cellular
automata in which the sites are at positions iB for some fixed B called the

60 Ga� cs

body size and integers i, and the switching times are at 0, $, 2$, 3$,... for
some small positive $. Let M$=PCA(P, 1, $, C) with P(s, r)=$R(s, r)
when s{r0 and 1&$ �s${r0

R(s$, r) otherwise. (This definition is sound
when $ is small enough to make the last expression nonnegative.) With any
fixed initial configuration '(} , 0), the trajectories '$ of M$ will converge
(weakly) to a certain random process ' which is the continuous-time
probabilistic cellular automaton with these rates, and which we will denote

CCA(R, C).

The process defined this way is a Markov process, i.e., if we fix the past
before some time t0 then the conditional distribution of the process after t0

will only depend on the configuration at time t0 . For a proof of the fact
that '$ converges weakly to ', see refs. 20 and 16 and the works quoted
there. For a more general definition allowing simultaneous change in a
finite number of sites, see ref. 20. A continuous-time interacting particle
system is noisy if R(s, r)>0 for all s{r0 .

2.5. Perturbation

2.5.1. Discrete Time

Intuitively, a deterministic cellular automaton is fault-tolerant if even
after it is ``perturbed'' into a probabilistic cellular automaton, its trajec-
tories can keep the most important properties of a trajectory of the original
deterministic cellular automaton. We will say that a random space-time
configuration (+, ') is a trajectory of the =-perturbation

CA=(Tr, C)

of the transition function Tr if the following holds. For all x0 ,..., xn+1 , t with
xi+1=xi+1 and events H in At&1 with +(H)>0, for all 0<i1< } } } <
ik<n,

+ { ,
k

j=1

['(xij
, t){Tr(', xij

, t&1)] } H & ,
n+1

i=0

['(xi , t&1)=si]=�=k.

Note that CA=(Tr, C) is not a probabilistic cellular automaton. If we
have any probabilistic cellular automaton PCA(P, C) such that P(s, r, C)
�1&= whenever s=Tr(r) then the trajectories of this are trajectories of
CA=(Tr, C); however, these do not exhaust the possibilities. We may think

61Reliable Cellular Automata with Self-Organization

of the trajectory of a perturbation as a process created by an ``adversary''
who is trying to defeat whatever conclusions we want to make about the
trajectory, and is only restricted by the inequalities that the distribution of
the trajectory must satisfy.

2.5.2. Continuous Time

By the =-perturbation of a continuous-time interacting particle system
with transition rates given by R(s, r), we understand the following: in the
above construction of a process, perturb the matrix elements R(s, r) by
some arbitrary amounts smaller than =. Note that this is a more modest
kind of perturbation since we perturb the parameters of the process once
for all and the perturbed process is again a continuous-time interacting
particle system.

2.5.3. Remembering a Few Bits

Suppose that the bit string that is a local state has some field F (it can
e.g., be the first two bits of the state). We will say that Tr remembers field
F if there is an =>0 such that for each string s # [0, 1] |F | there is a con-
figuration !s such that for an infinite C, for all trajectories (+, ') of the
=-perturbation CA=(Tr, C) with '(} , 0)=!s , for all x, t we have

+['(x, t) .F=s]>2�3.

We define similarly the notions of remembering a field for a probabilistic
transition matrix P and a probabilistic transition rate matrix R.

One of the main theorems in ref. 10 says:

Theorem 2.5 (1-dim, non-ergodicity, discrete time). There
is a one-dimensional transition function that remembers a field.

One of the new results is the following

Theorem 2.6 (1-dim, non-ergodicity, continuous time).
There is a one-dimensional transition-rate matrix that remembers a field.

3. CODES

3.1. Colonies

For the moment, let us concentrate on the task of remembering a
single bit in a field called Main�bit of a cellular automaton. We mentioned

62 Ga� cs

in Subsection 1.2 that in one dimension, even this simple task will require
the construction and maintenance of some non-local organization, since
this is the only way a large island can be eliminated.

This organization will be based on the concept of colonies. Let x be
a site and Q a positive integer. The set of Q sites x+i for i # [0, Q&1] will
be called the Q-colony with base x, and site x+i will be said to have
address i in this colony. Let us be given a configuration ! of a cellular
automaton M with state set S. The fact that ! is ``organized into colonies''
will mean that one can break up the set of all sites into non-overlapping
colonies of size Q, using the information in the configuration ! in a transla-
tion-invariant way. This will be achieved with the help of an address field
Addr which we will always have when we speak about colonies. The value
!(x) .Addr is a binary string which can be interpreted as an integer in
[0, Q&1]. Generally, we will assume that the Addr field is large enough
(its size is at least log Q). Then we could say that a certain Q-colony C is
a ``real'' colony of ! if for each element y of C with address i we have
!(y) .Addr=i. In order to allow, temporarily, smaller address fields, let us
actually just say that a Q-colony with base x is a ``real'' colony of the con-
figuration ! if its base is its only element having Addr=0.

Cellular automata working with colonies will not change the value of
the address field unless it seems to require correction. In the absence of
faults, if such a cellular automaton is started with a configuration grouped
into colonies then the sites can always use the Addr field to identify their
colleagues within their colony.

Grouping into colonies seems to help preserve the Main�bit field since
each colony has this information in Q-fold redundancy. The transition
function may somehow involve the colony members in a coordinated peri-
odic activity, repeated after a period of U steps for some integer U, of
restoring this information from the degradation caused by faults (e.g., with
the help of some majority operation).

Let us call U steps of work of a colony a work period. The best we can
expect from a transition function of the kind described above is that unless
too many faults happen during some colony work period the Main�bit
field of most sites in the colony will always be the original one. Rather
simple such transition functions can indeed be written. But they do not
accomplish qualitatively much more than a local majority vote for the
Main�bit field among three neighbors.

Suppose that a group of failures changes the original content of the
Main�bit field in some colony, in so many sites that internal correction is
no more possible. The information is not entirely lost since most probably,
neighbor colonies still have it. But correcting the information in a whole
colony with the help of other colonies requires organization reaching wider

63Reliable Cellular Automata with Self-Organization

than a single colony. To arrange this broader activity also in the form of
a cellular automaton we use the notion of simulation with error-correction.

Let us denote by M1 the fault-tolerant cellular automaton to be built.
In this automaton, a colony C with base x will be involved in two kinds
of activity during each of its work periods.

Simulation: Manipulating the collective information of the colony in a
way that can be interpreted as the simulation of a single state transition of
site x of some cellular automaton M2 .

Error-correction: Using the collective information (the state of x in M2)
to correct each site within the colony as necessary.

Of course, even the sites of the simulated automaton M2 will not be
immune to errors. They must also be grouped into colonies simulating an
automaton M3 , etc.; the organization must be a hierarchy of simulations.

Reliable computation itself can be considered a kind of simulation of
a deterministic cellular automaton by a probabilistic one.

3.2. Block Codes

3.2.1. Codes on Strings

The notion of simulation relies on the notion of a code, since the way
the simulation works is that the simulated space-time configuration can be
decoded from the simulating space-time configuration. A code, . between
two sets R, S is, in general, a pair (.*, .

*
) where .

*
: R � S is the encod-

ing function and .*: S � R is the decoding function and the relation

.*(.
*

(r))=r

holds. A simple example would be when R=[0, 1], S=R3, .
*

(r)=(r, r, r)
while .*((r, s, t)) is the majority of r, s, t.

This example can be generalized to a case when S1 , S2 are finite state
sets, R=S2 , S=SQ

1 where the positive integer Q is called the block size.
Such a code is called a block code. Strings of the form .

*
(r) are called

codewords. The elements of a codeword s=.
*

(r) are numbered as s(0),...,
s(Q&1). The following block code can be considered the paradigmatic
example of our codes.

Example 3.1. Suppose that S1=S2=[0, 1]12 is the state set of
both cellular automata M1 and M2 . Let us introduce the fields s .Addr and
s .Info of a state r=(s0 ,..., s11) in S1 . The Addr field consists of the first 5
bits s0 ,..., s4 , while the Info field is the last bit s11 . The other bits do

64 Ga� cs

File: 822J H28921 . By:XX . Date:14:02:01 . Time:15:24 LOP8M. V8.B. Page 01:01
Codes: 2599 Signs: 1864 . Length: 44 pic 2 pts, 186 mm

not belong to any named field. Let Q=31. Thus, we will use codewords of
size 31, formed of the symbols (local states) of M1 , to encode local states
of M2 . The encoding funcion .

*
assigns a codeword .

*
(r)=(s(0),..., s(30))

of elements of S1 to each element r of S2 . Let r=(r0 ,..., r11). We will set
s(i) .Info=ri for i=0,..., 11. The 5 bits in s(i) .Addr will denote the number
i in binary notation. This did not determine all bits of the symbols s(0),...,
s(30) in the codeword. In particular, the bits belonging to neither the Addr
nor the Info field are not determined, and the values of the Info field for
the symbols s(i) with i � [0, 11] are not determined. To determine .

*
(r)

completely, we could set these bits to 0.
The decoding function is simpler. Given a word s=(s(0),..., s(30)) we

first check whether it is a ``normal'' codeword, i.e., it has s(0) .Addr=0 and
s(i) .Addr{0 for i{0. If yes then, r=.*(s) is defined by ri=s(i) .Info for
i # [0, 11], and the word is considered ``accepted.'' Otherwise, .*(s)=0 } } } 0
and the word is considered ``rejected.''

Informally, the symbols of the codeword use their first 5 bits to mark
their address within the codeword. The last bit is used to remember their
part of the information about the encoded symbol.

For two strings u, v, we will denote by

u ? v (3.1)

their concatenation.

Example 3.2. This trivial example will not be really used as a code
but rather as a notational convenience. For every symbol set S1 , blocksize
Q and S2=SQ

1 , there is a special block code @Q called aggregation defined
by

@Q*((s(0),..., s(Q&1)))=s(0) ? } } } ? s(Q&1)

and @*Q defined accordingly. Thus, @Q* is essentially the identity: it just
aggregates Q symbols of S1 into one symbol of S2 . We use concatenation
here since we identify all symbols with binary strings.

Fig. 1. Three neighbor colonies with their tracks.

65Reliable Cellular Automata with Self-Organization

The codes . between sets R, S used in our simulations will have a
feature similar to the acceptance and rejection of Example 3.1. The set R
will always have a special symbol called Vac, the vacant symbol. An element
s # S will be called accepted by the decoding if .*(s){Vac, otherwise it is
called rejected.

3.3. Generalized Cellular Automata (Abstract Media)

A block code . could be used to define a code on configurations
between cellular automata M1 and M2 . Suppose that a configuration ! of
M2 is given. Then we could define the configuration !

*
=.

*
(!) of M1 by

setting for each cell x of ! and 0�i<Q,

!
*

(Qx+i)=.
*

(!(x))(i)

The decoding function would be defined correspondingly. This definition of
decoding is, however, unsatisfactory for our purposes. Suppose that !

*
is

obtained by encoding a configuration ! via .
*

as before, and ` is obtained
by shifting !

*
: `(x)=!

*
(x&1). Then the decoding of ` will return all

vacant values since now the strings (`(Qx),..., `(Qx+Q&1)) are not ``real''
colonies. However, it will be essential for error correction that whenever
parts of a configuration form a colony, even a shifted one, the decoding
should notice it. With our current definition of cellular automata, the
decoding function could not be changed to do this. Indeed, if `* is the con-
figuration decoded from ` then `*(0) corresponds to the value decoded
from (`(0),..., `(Q&1)), and `*(1) to the value decoded from (`(Q),...,
`(2Q&1)). There is no site to correspond to the value decoded from
(`(1),..., `(Q)).

Our solution is to generalize the notion of cellular automata. Let us
give at once the most general definition which then we will specialize later
in varying degrees. The general notion is an abstract medium

AMed(S, C, Configs, Evols, Trajs).

Here, Configs is the set of functions !: C � S that are configurations and
Evols is the set of functions ': C_[0, �&] � S that are space-time con-
figurations of the abstract medium. Further, Trajs is the set of random
space-time configurations (+, ') that are trajectories. In all cases that we
will consider, the set Trajs will be given in a uniform way, as a function
Traj(C) of C. The sets S, C, Configs and Evols are essentially superfluous
since the set Trajs defines them implicitly��therefore we may omit them
from the notation, so that eventually we may just write

AMed(Trajs).

66 Ga� cs

Given media M1 , M2 for the same S, C, we will write

M1/M2

if Trajs1/Trajs2 . Let

M1 & M2

be the medium whose trajectory set is Trajs1 & Trajs2 .
Let us now consider some special cases.

3.3.1. Cellular Abstract Media

All abstract media in this paper will be cellular: the sets Configs and
Evols will be defined in the way given here. The set S of local states will
always include a distinguished state called the vacant state Vac. If in a con-
figuration ! we have !(x){Vac then we will say that there is a cell at site
x in !. We will have a positive number B called the body size. In ordinary
cellular automata, B=1. For a site x, interval [x, x+B&] will be called
the body of a possible cell with base x. A function !: C � S is a configura-
tion if the cells in it have non-intersecting bodies.

Remark 3.3. Since not each site will be occupied by a cell, it is not
even important to restrict the set of sites to integers; but we will do so for
convenience.

A function ': C_[0, �&] � S is a space-time configuration if

(a) '(} , t) is a space configuration for each t;
(b) '(x, t) is a right-continuous function of t;
(c) Each finite time interval contains only finitely many switching

times for each site x.

A dwell period of ' is a tuple (x, s, t1 , t2) such that x is a site, s is a non-
vacant state, and 0�t1<t2 are switching times with '(x, t1)=s. The
rectangle [x, x+B&]_[t1 , t2&] is the space-time body of the dwell
period. It is easy to see that the dwell periods in a space-time configuration
have disjoint bodies.

This completes the definition of the sets Configs and Evols in cellular
abstract media, the only kind of media used in this paper. Therefore from
now on, we may write

AMed(C, Trajs, B)

We may omit any of the arguments if it is not needed for the context.

67Reliable Cellular Automata with Self-Organization

We will speak of a lattice configuration if all cells are at sites of the
form iB for integers i. We can also talk about lattice space-time configura-
tions: these have space-time bodies of the form

[iB, (i+1) B&]_[jT, (j+1) T&]

for integers i, j.
A special kind of generalized cellular automaton is a straightforward

redefinition of the original notion of cellular automaton, with two new but
inessential parameters: a deterministic cellular automaton

CA(Tr, B, T, C)

is determined by B, T>0 and a transition function Tr: S3 � S. We may
omit some obvious arguments from this notation. A lattice space-time con-
figuration ' with parameters B, T is a trajectory of this automaton if

'(x, t)=Tr('(x&B, t&T), '(x, t&T), '(x+B, t&T))

holds for all x, t with t�T. For a space-time configuration ' let us write

Tr(', x, t, B)=Tr('(x&B, t), '(x, t), '(x+B, t)) (3.2)

We will omit the argument B when it is obvious from the context.
Probabilistic cellular automata and perturbations are generalized corre-
spondingly as

PCA(P, B, T, C), CA=(Tr, B, T, C).

From now on, whenever we talk about a deterministic, probabilistic or per-
turbed cellular automaton we understand one also having parameters B, T.

We will have two kinds of abstract medium that are more general than
these cellular automata. We have a constant-period medium if in all its
trajectories, all dwell period lengths are multiples of some constant T.
Otherwise, we have a variable-period medium.

3.3.2. Block Codes Between Cellular Automata

In a cellular abstract medium with body size B, a colony of size Q is
defined as a set of cells x+iB for i # [0, Q&1]. Thus, the union of the
cell bodies of body size B in a colony of size Q occupies some interval
[x, x+QB&]. A block code will be called overlap-free if for every string
(s(0),..., s(n&1)), and all i�n&Q, if both (s(0),..., s(Q&1)) and (s(i+1),...,
s(i+Q&1)) are accepted then i�Q. In other words, a code is overlap-free

68 Ga� cs

if two accepted words cannot overlap in a nontrivial way. The code in
Example 3.1 is overlap-free. All block-codes considered from now on will
be overlap-free. Overlap-free codes are used, among others, in ref. 18.

3.3.3. Codes on Configurations

A block code . of block size Q can be used to define a code on con-
figurations between generalized abstract media M1 and M2 . Suppose that
a configuration ! of M2 , which is an AMed(QB), is given. Then we define
the configuration !

*
=.

*
(!) of M1 , which is an AMed(B), by setting for

each cell x of ! and 0�i<Q,

!
*

(x+iB)=.
*

(!(x))(i)

Suppose that a configuration ! of M1 is given. We define the configuration
!*=.*(!) of M2 as follows: for site x, we set !*(x)=.*(s) where

s=(!(x), !(x+B),..., !(x+(Q&1) B)) (3.3)

If ! is a configuration with !=.
*

(`) then, due to the overlap-free nature
of the code, the value !*(x) is nonvacant only at positions x where `(x) is
nonvacant. If ! is not the code of any configuration then it may happen
that in the decoded configuration .*(!), the cells will not be exactly at a
distance QB apart. The overlap-free nature of the code garantees that the
distance of cells in .*(!) is at least QB even in this case.

3.4. Block Simulations

Suppose that M1 and M2 are deterministic cellular automata where
Mi=CA(Tri , Bi , Ti), and . is a block code with

B1=B, B2=QB.

The decoding function may be as simple as in Example 3.1: there is an Info
track and once the colony is accepted the decoding function depends only
on this part of the information in it.

For each space-time configuration ' of M1 , we can define '*=.*(')
of M2 by setting

'*(} , t)=.*('(} , t)) (3.4)

We will say that the code . is a simulation if for each configuration ! of
M2 , for the trajectory (+, ') of M1 , such that '(} , 0, |)=.

*
(!) for almost

all |, the random space-time configuration (+, '*) is a trajectory of M2 .

69Reliable Cellular Automata with Self-Organization

(We do not have to change + here since the | in '*(x, t, |) is still coming
from the same space as the one in '(x, t, |).)

We can view .
*

as an encoding of the initial configuration of M2 into
that of M1 . A space-time configuration ' of M1 will be viewed to have a
``good'' initial configuration '(} , 0) if the latter is .

*
(!) for some configura-

tion of M2 . Our requirements say that from every trajectory of M1 with
good initial configurations, the simulation-decoding results in a trajectory
of M2 .

Let us show one particular way in which the code . can be a simu-
lation. For this, the function Tr1 must behave in a certain way which we
describe here. Assume that

T1=T, T2=UT

for some positive integer U called the work period size. Each cell of M1 will
go through a period consisting of U steps in such a way that the Info field
will be changed only in the last step of this period. The initial configuration
'(} , 0)=.

*
(!) is chosen in such a way that each cell is at the beginning of

its work period. By the nature of the code, in the initial configuration, cells
of M1 are grouped into colonies.

Once started from such an initial configuration, during each work
period, each colony, in cooperation with its two neighbor colonies, com-
putes the new configuration. With the block code in Example 3.1, this may
happen as follows. Let us denote by r&1 , r0 , r1 the value in the first 12 bits
of the Info track in the left neighbor colony, in the colony itself and in the
right neighbor colony respectively. First, r&1 and r1 are shipped into the
middle colony. Then, the middle colony computes s=Tr2(r&1 , r0 , r1) where
Tr2 is the transition function or M2 and stores it on a memory track.
(It may help understanding how this happens if we think of the possibilities
of using some mail, memory and workspace tracks.) Then, in the last step,
s will be copied onto the Info track.

Such a simulation is called a block simulation.

Example 3.4. Let us give a trivial example of a block simulation
which will be applied, however, later in the paper. Given a one-dimensional
transition function Tr(x, y, z) with state space S, we can define for all
positive integers Q an aggregated transition function TrQ(u, v, w) as
follows. The state space of of TrQ is SQ. Let rj=(rj (0),..., rj (Q&1)) for
j=&1, 0, 1 be three elements of SQ. Concatenate these three strings to get
a string of length 3Q and apply the transition function Tr to each group
of three consecutive symbols to obtain a string of length 3Q&2 (the end

70 Ga� cs

symbols do not have both neighbors). Repeat this Q times to get a string
of Q symbols of S: this is the value of TrQ(r&1 , r0 , r1).

For M1=CA(S, Tr, B, T) and M2=CA(SQ, TrQ, QB, QT), the aggre-
gation code @Q defined in Example 3.2 will be a block simulation of M2 by M1

with a work period consisting of U=Q steps. If along with the transition
function Tr, there were some fields F, G,.../All also defined then we define,
say, the field F in the aggregated cellular automaton as �Q&1

i=0 (F+i &S&).
Thus, if r=r(0) ? } } } ? r(Q&1) is a state of the aggregated cellular automa-
ton then r .F=r(0) .F ? r(1) .F ? } } } ? r(Q&1).F.

A transition function Tr is universal if for every other transition function
Tr$ there are Q, U and a block code . such that . is a block simulation of
CA(Tr$, Q, U) by CA(Tr, 1, 1).

Theorem 3.5 (Universal Cellular Automata). There is a uni-
versal transition function.

Sketch of Proof. This theorem is proved somewhat analogously to
the theorem on the existence of universal Turing machines. If the universal
transition function is Tr then for simulating another transition function Tr$,
the encoding demarcates colonies of appropriate size with Addr=0, and
writes a string Table that is the code of the transition table of Tr$ onto a
special track called Prog in each of these colonies. The computation is just
a table-look-up: the triple (r&1 , r0 , r1) mentioned in the above example
must be looked up in the transition table. The transition function governing
this activity does not depend on the particular content of the Prog track,
and is therefore independent of Tr$. For references to the first proofs of
universality (in a technically different but similar sense), see refs. 4 and 26.

Note that a universal cellular automaton cannot use codes similar to
Example 3.1. Indeed, in that example, the capacity of the cells of M1 is at
least the binary logarithm of the colony size, since each colony cell con-
tained its own address within the colony. But if M1 is universal then the
various simulations in which it participates will have arbitrarily large
colony sizes.

The size Q of the simulating colony will generally be very large also
since the latter contains the whole table of the simulated transition function.
There are many special cellular automata M2 , however, whose transition
function can be described by a small computer program and computed in
relatively little space and time (linear in the size &S2&). The universal
transition function will simulate these with correspondingly small Q and U.
We will only deal with such automata.

71Reliable Cellular Automata with Self-Organization

3.5. Single-Fault-Tolerant Block Simulation

Here we outline a cellular automaton M1 that block-simulates a
cellular automaton M2 correctly as long as at most a single error occurs in
a colony work period of size U. The outline is very informal: it is only
intended to give some framework to refer to later: in particular, we add a
few more fields to the fields of local states introduced earlier. For sim-
plicity, these fields are not defined here in a way to make the cellular
automaton separable in the sense defined in 2.2.1. They could be made so
with a few adjustments but we want to keep the introduction simple.

The automaton M1 is not universal, i.e., the automaton M2 cannot be
chosen arbitrarily. Among others, this is due to the fact that the address
field of a cell of M1 will hold its address within its colony. But we will see
later that universality is not needed in this context.

The cells of M1 will have, besides the Addr field, also a field Age. If no
errors occur then in the i th step of the colony work period, each cell will
have the number i in the field Age. There are also fields called Mail, Info,
Work, Hold, Prog.

The Info field holds the state of the represented cell of M2 in three
copies. The Hold field will hold parts of the final result before it will be, in
the last step of the work period, copied into Info. The role of the other
fields is clear.

The program will be described from the point of view of a certain
colony C. Here is an informal description of the activities taking place in
the first third of the work period.

1. From the three thirds of the Info field, by majority vote, a single
string is computed. Let us call it the input string. This computation, as all
others, takes place in the workspace field Work; the Info field is not affec-
ted. The result is also stored in the workspace.

2. The input strings computed in the two neighbor colonies are
shipped into C and stored in the workspace separately from each other and
from the original input string.

3. The workspace field behaves as a universal automaton, and from
the three input strings and the Prog field, computes the string that would
be obtained by the transition function of M2 from them. This string will be
copied to the first third of the Hold track.

In the second part of the work period, the same activities will be per-
formed, except that the result will be stored in the second part of the Hold
track. Similarly with the third part of the work period. In a final step, the
Hold field is copied into the Info field.

72 Ga� cs

The computation is coordinated with the help of the Addr and Age
fields. It is therefore important that these are correct. Fortunately, if a
single fault changes such a field of a cell then the cell can easily restore it
using the Addr and Age fields of its neighbors.

It is not hard to see that with such a program (transition function), if
the colony started with ``perfect'' information then a single fault will not
corrupt more than a third of the colony at the end of the work period. On
the other hand, if two thirds of the colony was correct at the beginning of
the colony work period and there is no fault during the colony work period
then the result will be ``perfect.''

3.6. General Simulations

The main justification of the general notion of abstract media is that
it allows a very general definition of simulations: a simulation of abstract
medium M2 by abstract medium M1 is given by a pair

(.
*

, 8*)

where 8* is a mapping of the set of space-time configurations of M1 into
those of M2 (the decoding), and .

*
is a mapping of the set of configurations

of M2 to the set of configurations of M1 (the encoding for initialization).
Let us denote

'*=8*(').

We require, for each trajectory ' for which the initial configuration has the
encoded form '(} , 0)=.

*
(!), that '* is a trajectory of M2 with '*(} , 0)=!.

A simulation will be called local, if there is a finite space-time rectangle
V*=I_[&u, 0] such that 8*(')(w, t) depends only on '((w, t)+V*).
Together with the shift-invariance property, the locality property implies
that a simulation is determined by a function defined on the set of con-
figurations over V*. All simulations will be local unless stated otherwise.
Corollary 7.3 gives an example of non-local simulation.

If u=0 then the configuration '*(} , t) depends only on the configura-
tion '(} , t). In this case, the simulation could be called ``memoryless.'' For
a memoryless simulation, the simulation property is identical to the one we
gave at the beginning of Subsection 3.4. Our eventual simulations will not
be memoryless but will be at least non-anticipating: we will have u>0, i.e.,
the decoding looks back on the space-time configuration during [t&u, t],
but still does not look ahead. In particular, the value of '*(} , 0) depends
only on '(} , 0) and therefore the simulation always defines also a decoding
function .* on space-configurations. From now on, this decoding function

73Reliable Cellular Automata with Self-Organization

will be considered part of the definition of the simulation, i.e., we will write

8=(.
*

, .*, 8*).

Suppose that a sequence M1 , M2 ,... of abstract media is given along with
simulations 81 , 82 ,... such that 8k is a simulation of Mk+1 by Mk . Such
a system will be called an amplifier. Amplifiers are like renormalization
groups in statistical physics. Of course, we have not seen any nontrivial
example of simulation other than between deterministic cellular automata,
so the idea of an amplifier seems far-fetched at this moment.

3.6.1. Simulation Between Perturbations

Our goal is to find nontrivial simulations between cellular automata
M1 and M2 , especially when these are not deterministic. If M1 , M2 are
probabilistic cellular automata then the simulation property would mean
that whenever we have a trajectory (+, ') of M1 the random space-time
configuration '* decoded from ' would be a trajectory of M2 . There are
hardly any nontrivial examples of this sort since in order to be a trajectory
of M2 , the conditional probabilities of .*(') must satisfy certain equations
defined by P2 , while the conditional probabilitiees of ' satisfy equations
defined by P1 .

There is more chance of success in the case when M1 and M2 are per-
turbations of some deterministic cellular automata since in this case,
only some inequalities must be satisfied. The goal of improving reliability
could be this. For some universal transition function Tr2 , and at least two
different initial configurations !i (i=0, 1), find Tr1 , Q, U, c with B1=B,
B2=BQ, T1=T, T2=TU and a block simulation .1 such that for all =>0,
if =1==, =2=c=2 and Mk is the perturbation

CA=k
(Trk , Bk , Tk , Z)

then 81 is a simulation of M2 by M1 . The meaning of this is that even if
we have to cope with the fault probability = the simulation will compute
Tr2 with a much smaller fault probability c=2. The hope is not unreasonable
since in Subsection 3.5, we outlined a single-fault-tolerant block simulation
while the probability of several faults happening during one work period is
only of the order of (QU=)2. However, it turns out that the only simply
stated property of a perturbation that survives noisy simulation is a certain
initial stability property (see below).

3.6.2. Error-Correction

Even if the above goal can be achieved, the reason for the existence of
the simulated more reliable abstract medium is to have feedback from it to
the simulating one. The nature of this feedback will be defined in the

74 Ga� cs

notion of error-correction to whose definition now we proceed. Let us call
the set

70=[0, 1, *, V] (3.5)

the standard alphabet. Symbol * will be used to delimit binary strings, and
V will serve as a ``don't-care'' symbol. Each field F of a cell state such that
the field size is even, can be considered not only a binary string but a string
of (half as many) symbols in the standard alphabet. If r, s are strings in
(70)n then

rPs

will mean that s(i)=r(i) for all 0�i<n such that r(i){V. Thus, a don't-
care symbol r(i) imposes no restriction on s in this relation. There will be
two uses of the don't-care symbol.

v The more important use will come in defining the code used for
error-correction in a way that it requires the correction of only those parts
of the information in which correction is desirable.

v The less important use is in defining the notion of ``monotonic out-
put:'' namely, output that contains more and more information as time
proceeds. This is convenient, e.g., for continuous-time cellular automata,
where it is difficult to say in advance when the computation should end.

For codes .
*

, �
*

, we will write

�
*

P.
*

if for all s we have �
*

(s)P.
*

(s).
Let us define the notion of error-correction. Let 8=(.

*
, .*, 8*) be

a simulation whose encoding .
*

is a block code with block size Q, between
abstract cellular media Mi (i=1, 2). Let Ti>0 (i=1, 2) be some param-
eters, and .

**
P.

*
a block code of blocksize Q. We say that 8 has the

=-error-correction property with respect to .
**

, T1 , T2 if the following
holds for every configuration ! of M2 and every trajectory (+, ') of M1

with '(} , 0)=.
*

(!).
Let '*=8*(') and let x1 , x2 be sites where x1 has address a in the

Q-colony with base x2 , let t0 be some time. Let E be the event that
'*(x2 , }) is nonvacant during [t0&T2 �3, t0] and let E$ be the event that
for each t in [t0&T1 �3, t0] there is a t$ in [t0&T2 �3, t] with

.
**

('*(x2 , t$))(a)P'(x1 , t).

Then Prob[E & cE$]<=.

75Reliable Cellular Automata with Self-Organization

File: 822J H28932 . By:XX . Date:14:02:01 . Time:15:25 LOP8M. V8.B. Page 01:01
Codes: 1910 Signs: 1136 . Length: 44 pic 2 pts, 186 mm

Informally, this means that for all x1 , x2 , a in the given relation, the
state '(x1 , t) is with large probability what we expect by encoding some
'*(x2 , t$) via .

**
and taking the a th symbol of the codeword. Error-

correction is only required for a code .
**

P.
*

since .
*

determines the
value of many fields as a matter of initialization only: these fields need not
keep their values constant during the computation, and therefore .

**
will

assign don't-care symbols to them. The code .
**

will thus generally be
obtained by a simple modification of .

*
.

Example 3.6. Let

B1=1, B2=Q, T1=1, T2=U

for some U>Q. Assume that for k=1, 2, our media Mk are cellular
generalized media with body sizes Bk and state spaces Sk . Assume further
that M2 has at least a field F2 with |F2 |�Q�3 and M1 has at least the fields
F1 , Addr, Age, with |F1 |=2. For a state s # S2 , let the string

s$=.
*

(s) # SQ
1

be defined as follows. Take the binary string s .F2 , repeat it 3 times, pad it
with V's to a string of size Q of the standard alphabet: let this be a string
(f (0),..., f (Q&1)). Now for each address b, let

s$(b) .F1= f (b), s$(b) .Addr=b, s$(b) .Age=0,

Fig. 2. Error correction.

76 Ga� cs

and let all other fields of s$(b) be filled with V's. The definition of
s"=.

**
(s) starts as the definition of s$ with the only difference that

s"(b) .Age=V. Thus, the code .
*

(s) encodes a redundant version of s .F2

onto the F1 track of the block s$ and initializes the Addr and Age tracks
to the values they would have at the beginning of a work period. The code
.

**
(s) leaves all tracks other than F1 and Addr undetermined, since it will

have to be compared with the state of the colony also at times different
from the beginning of the work period.

Suppose that an amplifier (Mk , 8k)k�1 is given along with the sequen-
ces .k**

, Tk , ="k . We will call this structure an error-correcting amplifier if
for each k, the simulation .k has the ="k -error correction property with
respect to .k**

, Tk , Tk+1 .

3.7. Remembering a Bit: Proof from an Amplifier Assumption

The following lemma will be proved later in the paper.

Lemma 3.7 (Initially Stable Amplifier). We can construct the
following objects, for k=1, 2,... .

(a) Media Mk over state space Sk , simulations 8k=(.k*
, .k*, 8k*)

and sequences .k**
, ="k , Tk forming an ="k -error correcting amplifier with

�k ="k<1�6.

(b) (Initial stability) Parameters =k , B1 with �k =k<1�6, transition
function Tr1 and two configurations !0 , !1 such that, defining !1

u=!u ,
!k+1

u =.k*(!k
u) for u=0, 1, we have

M1=CA=1
(Tr1 , B1 , T1 , Z).

Further, for each k, u, for each trajectory ' of Mk with '(} , 0)=!k
u , for all

t<Tk , for each site x, we have

Prob['(x, t){'(x, 0)]<=k .

(c) Parameters Qk such that the codes .k*
are block codes with

block size Qk .

(d) (Broadcast) Fields F k for the state spaces Sk such that for each
k, for each address a # [0, Qk&1] and state s # Sk+1 , for each u # [0, 1]
and site x we have

!k
u(x) .F k=u (3.6)

s .F k+1P.k**
(s)(a) .F k. (3.7)

77Reliable Cellular Automata with Self-Organization

Equation (3.6) says for the configurations !k
u , (obtained by decoding

from the initial configuration !u) that in each cell of medium Mk , field Fk

has value u. Equation (3.7) says the following. Assume for symbol s # Sk+1

we have s .Fk+1=u{V. Then the encoding function .
**

encodes s into a
colony of Qk symbols r0 ,..., rQk&1 such that for each a, we have ra .Fk=u.
Thus, the Fk+1 field of s gets ``broadcast'' into the Fk field of each symbol
of the code of s. This way, even if property (3.6) were assumed only for a
fixed level k, property (3.7) would imply it for all i<k.

Let us use this lemma to prove the first theorem.

Proof of Theorem 2.5. Let us use the amplifier defined in the above
lemma. Let '1 be a trajectory of the medium M1 with initial configuration !u .
Let 'k be defined by the recursion 'k+1=8k*('k). Let (x1 , t1) be a space-
time point in which we want to check '(x1 , t1) .F 1=u. There is a sequence
of points x1 , x2 ,... such that xk+1 is a cell of 'k+1(} , 0) containing xk in its
body with some address bk . There is a first n with t1<Tn�3. Let Fk be the
event that 'k(xk , t) .F k=u for t in [t1&Tk �3, t1]. The theorem follows
from the bounds on �k =k and �k ="k and from

Prob[c(F1 & } } } & Fn)]�=n+ :
n&1

k=1

="k . (3.8)

To prove this inequality, use

c(F1 & } } } & Fn)=cFn _ .
n&1

k=1

(cFk & Fk+1).

By the construction, 'n(xn , 0) .F n=u. Since the duration of [0, t1] is less
than Tn we have Prob['n(xn , t1){'n(xn , 0)]<=n by the initial stability
property, proving Prob[cFn]�=n . The error-correction property and the
broadcast property imply Prob[Fk+1 & cFk]�="k .

4. HIERARCHY

4.1. Hierarchical Codes

The present section may seem a long distraction from the main course
of exposition but many readers of this paper may have difficulty imagining
an infinite hierarchical structure built into a configuration of a cellular
automaton. Even if we see the possibility of such structures it is important
to understand the great amount of flexibility that exists while building it.
Formally, a hiearchy will be defined as a ``composite code.'' Though no

78 Ga� cs

File: 822J H28935 . By:XX . Date:14:02:01 . Time:15:26 LOP8M. V8.B. Page 01:01
Codes: 3004 Signs: 2375 . Length: 44 pic 2 pts, 186 mm

decoding will be mentioned in this subsection, it is still assumed that to
all codes .

*
mentioned, there belongs a decoding function .* with

.*(.
*

(x))=x.

4.1.1. Composite Codes

Let us discuss the hierarchical structure arising in an amplifier. If ., �
are two codes then . b � is defined by (. b �)

*
(!)=.

*
(�

*
(!)) and

(. b �)* (`)=�*(.*(`)). It is assumed that ! and ` are here configurations
of the appropriate cellular automata, i.e., the cell body sizes are in the
corresponding relation. The code . b � is called the composition of . and �.

For example, let M1 , M2 , M3 have cell body sizes 1, 31, 312 respec-
tively. Let us use the code . from Example 3.1. The code .2=. b . maps
each cell c of M3 with body size 312 into a ``supercolony'' of 31 } 31 cells of
body size 1 in M1 . Suppose that `=.2

*
(!) is a configuration obtained by

encoding from a lattice configuration of body size 312 in M3 , where the
bases of the cells are at positions &480+312i. (We chose &480 only since
480=(312&1)�2 but we could have chosen any other number.) Then ` can
be broken up into colonies of size 31 starting at any of those bases. Cell 55
of M1 belongs to the colony with base 47=&480+17 } 31 and has address
8 in it. Therefore the address field of `(55) contains a binary representation
of 8. The last bit of this cell encodes the 8th bit the of cell (with base) 47
of M2 represented by this colony. If we read together all 12 bits represented
by the Info fields of the first 12 cells in this colony we get a state `*(47)
(we count from 0). The cells with base &15+31j for j # Z with states
`*(&15+31j) obtained this way are also grouped into colonies. In them,
the first 5 bits of each state form the address and the last bits of the first
12 cells, when put together, give back the state of the cell represented by
this colony. Notice that these 12 bits were really drawn from 312 cells of M1 .
Even the address bits in `*(47) come from different cells of the colony with
base 47. Therefore the cell with state `(55) does not contain information
allowing us to conclude that it is cell 55. It only ``knows'' that it is the 8th
cell within its own colony (with base 47) but does not know that its colony
has address 17 within its supercolony (with base &15 } 31) since it has at
most one bit of that address. See Fig. 3.

Fig. 3. Fields of a cell simulated by a colony.

79Reliable Cellular Automata with Self-Organization

4.1.2. Infinite Composition

A code can form composition an arbitrary number of times with itself
or other codes. In this way, a hierarchical, highly nonhomogenous, struc-
ture can be defined using cells that have only a small number of states.
A hierarchical code is given by a sequence

(Sk , Qk , .k*
)k�1 (4.1)

where Sk is an alphabet, Qk is a positive integer and .k*
: Sk+1 � SQk

k is
an encoding function. Since Sk and Qk are implicitly defined by .k*

we can
refer to the code as just (.k).

We will need a composition .1*
b .2*

b } } } of the codes in a hierarchi-
cal code since the the definition of the initial configuration for M1 in the
amplifier depends on all codes .i*

. What is the meaning of this? We will
want to compose the codes ``backwards,'' i.e., in such a way that from a
configuration !1 of M1 with cell body size 1, we can decode the configura-
tion !2=.1*(!1) of M2 with cell body size B2=Q1 , configuration !3=
.2*(!2), of M3 with body size B3=Q1Q2 , etc. Such constructions are not
unknown, they were used e.g., to define ``Morse sequences'' with applica-
tions in group theory as well in the theory of quasicrystals.(18, 24).

Let us call a sequence a1 , a2 ,... with 0�ak<Qk non-degenerate for
Q1 , Q2 ,... if there are infinitely many k with ak>0 and infinitely many k
with ak<Qk&1. The pair of sequences

(Qk , ak)�
k=1 (4.2)

with non-degenerate ak will be called a block frame of our hierarchical
codes. All our hierarchical codes will depend on some fixed block frame,
((Qk , ak)), but this dependence will generally not be shown in the notation.

Remark 4.1. 1. The construction below does not need the gener-
ality of an arbitrary non-degenerate sequence: we could have ak=1
throughout. We feel, however, that keeping ak general makes the construc-
tion actually more transparent.

2. It is easy to extend the construction to degenerate sequences. If
e.g., ak=0 for all but a finite number of k then the process creates a con-
figuration infinite in the right direction, and a similar construction must be
added to attach to it a configuration infinite in the left direction.

For a block frame ((Qk , ak)), a finite or infinite sequence (s1 , a1),
(s2 , a2),... will be called fitted to the hierarchical code (.k*

) if

.k*
(sk+1)(ak)=sk

80 Ga� cs

holds for all k. For a finite or infinite space size N, let

B1=1,

Bk=Q1 } } } Qk&1 for k>1, (4.3)

K=K(N)= sup
Bk<N

k+1, (4.4)

ok=&a1 B1& } } } &ak&1Bk&1 ,

Ck(x)=ok+xBk . (4.5)

The following properties are immediate:

o1=C1(0)=0,

ok=ok+1+ak Bk , (4.6)

0 # ok+[0, Bk&1].

Proposition 4.2. Let us be given a fitted sequence (sk , ak)k�1 .
Then there are configurations !k of Mk over Z such that for all k�1 we
have

.k*
(!k+1)=!k,

!k(ok)=sk .

The infinite code we are interested in is !1. Note that in this construc-
tion, sk is the state of the site ok in configuration !k whose body contains
the site 0. This site has address ak in a colony with base ok+1 in !k+1.

Proof. Let

!k
k (4.7)

be the configuration of Mk which has state sk at site ok and arbitrary states
at all other sites Ck(x), with the following restriction in case of a finite
space size N. Let !k

k{Vac only for k�K=K(N) and !K
K (oK+z){Vac

only if

0�zBK<N. (4.8)

Let

! i
k=.i*

(.(i+1)*
(} } } .(k&1)*

(!k
k) } } })) (4.9)

81Reliable Cellular Automata with Self-Organization

for k>i�1. We have

!k
k+1(ok)=.k*

(!k+1
k+1(ok+1))(ak)=!k

k(ok) (4.10)

where the first equation comes by definition, the second one by fittedness.
The encoding conserves this relation, so the partial configuration ! i

k+1(ok+1

+[0, Bk+1&1]) is an extension of ! i
k(ok+[0, Bk&1]). Therefore the

limit !i=limk ! i
k exists for each i. Since (ak) is non-degenerate the limit

extends over the whole set of integer sites. K

Though !1 above is obtained by an infinite process of encoding, no
infinite process of decoding is needed to yield a single configuration from
it: at the k th stage of the decoding, we get a configuration !k with body
size Bk .

4.1.3. Controlling, Identification

The need for some freedom in constructing infinite fitted sequences
leads to the following definitions. For alphabet S and field F let

S .F=[w .F : w # S].

Then, of course, &S .F&=|F |. Let D=[d0 ,..., d |D|&1]/[0, Q&1] be a set
of addresses with di<di+1 . For a string s, let

s(D) .F

be the string of values (s(d0) .F,..., s(d |D|&1) .F) so that

s .F=s([0, Q&1]) .F

Field F controls an address a in code .
*

via function #: S1 .F � S1 if

(a) For all r # S1 .F there is an s with .
*

(s)(a) .F=r; in other words,
.

*
(s)(a) .F runs through all possible values for this field as s varies.

(b) For all s we have .
*

(s)(a)=#(.
*

(s)(a) .F); in other words, the
field .

*
(s)(a) .F determines all the other fields of .

*
(s)(a).

From now on, in the present subsection, whenever we denote a field by F k

and a code by .k*
we will implicitly assume that F k controls address ak in

.k*
unless we say otherwise. (The index k in F k is not an exponent.)
Suppose that fields F 1, F 2 are defined for cellular automata M1 and

M2 between which the code . with blocksize Q is given. Suppose that set
D=[d0 ,..., d |D| &1] satisfies |D|=|F 2|�|F 1|. We say that in .

*
, field F 1

82 Ga� cs

File: 822J H28939 . By:XX . Date:14:02:01 . Time:15:27 LOP8M. V8.B. Page 01:01
Codes: 2668 Signs: 1780 . Length: 44 pic 2 pts, 186 mm

over D is identified with F 2 if in any codeword w=.
*

(s), the string
w(d0) .F 1 ? } } } ? w(d |D|&1) .F 1 is identical to s .F 2. Conversely, thus
w(di) .F 1=s .F 2([i |F 1|, (i+1) |F 1|&1]). The identification of F 2 with F 1

over D implies that if a simulation has error-correction in F 1 over D then
the information restored there is s .F 2.

Example 4.3. Consider the simulation outlined in Subsection 3.5,
and let us call the encoding .

*
. Let F 1 be the Info field of M1 : we denote

it by Info1. Assume further that the simulated medium M2 is of a similar
type, so it has an Info2 field. Assume for simplicity

6 | Q, |Info1|=2, |Info2|=Q�3.

The Info1 field of cells in interval [0, Q�3&1] of a simulating colony
represents the whole state of a simulated cell of M2 . The Info1 field on
[Q�3, Q&1] is only used for redundancy. Only a segment of the Info1 field
of [0, Q�3&1], say the one on [0, Q�6&1] is used to represent Info2 of
the simulated cell. The rest is used for encoding the other fields. Hence
Info1 on [0, Q�6&1] is identified with Info2 in our code .

*
.

Let s$=.
*

(s)(1) be the state of the cell with address 1 of a colony of
M1 which is the result of encoding state s of M2 . Let s$.Info1 be the third
and fourth bits of s .Info2, s$.Addr=1, and s$.F=0 for all fields different
from these two. Then Info1 controls address 1 in the code .

*
. See Fig. 4.

If for each address a, the field F 1 over [a] is identified with F 2 then
we say that F 2 is broadcast to F 1 (since this means that the code copies the
value of s .F 2 into the F 1 field of each cell of .

*
(s)).

Let us be given

9=((Sk , Qk , .k*
, F k, #k , ak) : k�1) (4.11)

where 1�ak�Qk&2, such that in code .k*
,

(a) F k over [ak] is identified with F k+1;

(b) F k controls address ak for .k*
via #k .

Fig. 4. Control and identification.

83Reliable Cellular Automata with Self-Organization

Such a system of fields F k will be called a primitive shared field for the
hierarchical code (.k*

). If also each code .k*
, broadcasts F k+1 into F k

then we will say that the fields F k form a broadcast field. Note that the field
still controls only a single address ak . The Main�bit field mentioned in
Subsection 3.1 would be an example.

Proposition 4.4. For any hierarchical code with primitive shared
field given as in (4.11) above, for all possible values u1 # S1 .F 1 the infinite
sequence (sk , ak)k�1 with sk=#k(u1) is fitted.

The proof is immediate from the definitions.
Let us denote the configurations !1, !1

k that belong to this fitted
infinite sequence according to Proposition 4.2 (and its proof) by

!1=1 (u1 ; 9)=1 (u1),
(4.12)

!1
k=1 (u1 ; k, 9)=1 (u1 ; k).

4.1.4. Coding an Infinite Sequence

Let us show now how a doubly infinite sequence of symbols can be
encoded into an infinite starting configuration. Let us be given

9=(Sk , Qk , .k*
, F k, qk , #k , ak)k�1 (4.13)

where 2�qk�Qk and the sequence ak is non-degenerate, such that in code
.k*

,

(a) F k over [0, qk&1] is identified with F k+1;

(b) F k controls address ak for .k*
via 1k .

Such a system will be called a shared field for the fields F k, and the
hierarchical code (.k*

), and the fields F k will be denoted as

F k(9).

The identification property implies that for all 0�a<qk , we have

.k*
(s)(a) .F k=s .F k+1([a |F k|, (a+1) |F k|&1]). (4.14)

Example 4.5. Let us show some examples of codes .k in which F k

over [0, qk&1] is identified with F k+1.

84 Ga� cs

File: 822J H28941 . By:XX . Date:14:02:01 . Time:15:27 LOP8M. V8.B. Page 01:01
Codes: 2891 Signs: 2073 . Length: 44 pic 2 pts, 186 mm

A code �=(�
*

, �*) with �*: RQ � S will be called d-error-correcting
with blocksize Q if for all u, v, if u differs from �

*
(v) in at most d symbols

then �*(u)=v. Assume that both R and S are of the form [0, 1]n (for dif-
ferent n). A popular kind of error-correcting code are codes � such that �

*
is a linear mapping when the binary strings in S and RQ are considered
vectors over the field [0, 1]. These codes are called linear codes. It is suf-
ficient to consider linear codes � which have the property that for all s, the
first |S | bits of the codeword �

*
(s) are identical to s: they are called the

information bits. (If a linear code is not such, it can always be rearranged
to have this property.) In this case, the remaining bits of the codeword are
called error-check bits, and they are linear functions of s. Applying such
linear codes to our case, for s # Sk+1 , let

w=.k*
(s).

Then we will have

'
0�a<Qk

w(a) .F k=�k*
(s .F k+1)

for a linear code �k whose information bits are in �0�a<qk
w(a) .F k and

error-check bits are in �qk�a<Qk
w(a) .F k. For d=1, if we are not trying to

minimize the amount of redundancy in the error correction then we may
want to use the tripling method outlined in Subsection 3.5 and Example 4.3,
which sets qk=Qk �3. In this case, the error-check bits simply repeat the
original bits twice more. See Fig. 5.

Example 4.6. In a digression that can be skipped at first reading,
let us define the more sophisticated linear code we will be using in later
construction (a generalization of the so-called Reed�Solomon code, see
ref. 7).

Let our codewords (information symbols and check symbols together)
be binary strings of length Nl for some l, N. Binary strings of length l will
be interpreted as elements of the Galois field GF(2l) and thus, each binary
string c of length Nl will be treated as a vector (c(0),..., c(N&1)) over
GF(2l). (Note that the word ``field'' is used in two different senses in the
present paper.) Let us fix N distinct nonzero elements :i of GF(2l) and let

Fig. 5. Error-correcting code in a shared field.

85Reliable Cellular Automata with Self-Organization

t<N�2 be an integer. The codewords are those vectors c that satisfy the
equation

:
N&1

i=0

: j
i c(i) .F k=0 (j=1,..., 2t) (4.15)

where the addition, multiplication and taking to power j are performed in
the field GF(2l). These are 2t linear equations. If we fix the first N&2t
elements of the vector in any way, (these are the information symbols) the
remaining 2t elements (the error check symbols) can be chosen in a way to
satisfy the equations. This set of equations is always solvable, since its
determinant is a Vandermonde determinant.

Below, we will show a procedure for correcting any &�t nonzero
errors. This shows that for the correction of error in any �t symbols, only
2t error-check symbols are needed.

If E=(e0 ,..., eN&1) is the sequence of errors then the word that will be
observed is C+E. Only eir

are nonzero for r=1,..., &. Let Yr=eir
, Xr=:ir

.
Then we define the syndrome Sj for j=1,..., 2t by

Sj=:
i

(ci+e i) : j
i =:

i

ei: j
i =:

r

YrX j
r (4.16)

which can clearly be computed from the codeword: it is the amount by
which the codeword violates the j th error check equation. We will show,
using the last expression, that Yr and Xr can be determined using Sj . We
first define the auxiliary polynomial

4(x)=`
r

(1&xXr)= :
&

s=0

4sxs

whose roots are X &1
r . Let us show how to find the coefficients 4s for s>0.

We have, for any r=1,..., &, and any j=1,..., 2t&&:

0=YrX j+&
r 4(X &1

r)=:
s

4sYrX j+&&s
r

Hence, summing for r,

0= :
&

s=0

4s \:
r

Yr X j+&&s
r += :

&

s=0

4sSj+&&s (j=1,..., 2t&&), (4.17)

hence using 40=1, �&
s=1 4sS j+&&s=&S j+& . This is a system of linear

equations for 4s whose coefficients are the syndroms, known to us, and

86 Ga� cs

whose matrix M& is nonsingular. Indeed, M&=ABAT where B is the
diagonal matrix (YrXr) and A is the Vandermonde matrix Aj, r=X j&1

r .
A decoding algorithm now works as follows. For &=1, 2,..., t, see if M

is nonsingular, then compute 4(x) and find its roots by simple trial-and-
error, computing 4(:i&1) for all i. Then, find Yr by solving the set of
Eqs. (4.16) and see if the resulting corrected vector C satisfies (4.15). If yes,
stop. (There is also a faster way for determining 4(x), via the Euclidean
algorithm, see ref. 7).

To make the code completely constructive we must find an effective
representation of the field operations of GF(2l). This finite field can be
efficiently represented as the set of remainders with respect to an irreduc-
ible polynomial of degree l over GF(2), so what is needed is a way to
generate large irreducible polynomials. Now, it follows from the theory of
fields that

x2 } 3s
+x3s

+1

is irreducible over GF(2) for any s. So, the scheme works for all l of the
form 2 } 3s.

In a hierarchical code, with a shared field, there is a function X(y)
with the property that site y of the original information will map to site
X(y) in the code. To define this function, let

Bk , ok , C$k(y)

be defined like Bk , ok , Ck(y) but using qk in place of Qk . For all k, every
integer y can be represented uniquely in the form

y= :
k

i=1

(y$i&ai) B$i (4.18)

where 0� y$i<qi for i<k. Since (ak) is non-degerate for (qk), this is true
even with k=�, in which case the above sum is still finite. Let

X(y, i; k)=X(y, i; k, 9)= :
k

m=i

(y$m&am) Bm ,

X(y, i)=X(y, i; K(N)),
(4.19)

X(y; k)=X(y, 1; k),

X(y)=X(y, 1; K(N)).

87Reliable Cellular Automata with Self-Organization

Define the same notation for X$ with B$k instead of Bk . Notice that
X(0, i)=X$(0, i)=0, X$(y, 1)= y. Clearly, the sites of form oi+X(y, i; k)
for all possible y will form a lattice of distance Bi . If i<k then the defini-
tions give

oi+X(y, i; k)=oi+1+X(y, i+1; k)+ y$iBi . (4.20)

Using the notation @Q introduced in 3.2.1, let us define the aggregated
configurations

k=@B$k
(*) (4.21)

of body size B$k over Z. Then, of course,

k+1=@qk
(*k). (4.22)

Let

Visible(k, N)=[y : 0� y&oK<NB$K �BK]= .
0�zBk<N

C$k(z) (4.23)

Then X(y) is defined whenever y # Visible(k, N), i.e., the symbols *(y) can
be recovered after encoding whenever y is in this interval.

Proposition 4.7. For a hierarchical code with a shared field as
given in (4.13), for an arbitrary configuration *=*1 in (S1 .F 1)Z, there are
configurations !k over Z such that for all k�1, y # Z we have

.k*
(!k+1)=!k, (4.24)

!1(X(y)) .F 1=*1(y). (4.25)

More generally, we have

!i (oi+X(y, i)) .F i=*i (o$i+X$(y, i)) (4.26)

for 1�i�k. If the space is ZN for a finite N then all these configurations
with the above properties exist for all k with Bk�N, and (4.25) holds
whenever y # Visible(K(N), N).

Proof. The proof is mechanical verification: we reproduce it here
only to help the reader check the formalism.

1. Let us construct !k. For infinite space size, let

!k
k(Ck(y))=#k(*k(C$k(y))). (4.27)

88 Ga� cs

For finite space size N, define the above only for Bk�N and y in
[0, wN�Bkx&1], where Ck(y) on the left-hand side is taken (mod N). In all
other sites x, let !k

k(x)=Vac. Let ! i
k be defined again by (4.9). We define

!i as in the proof of Proposition 4.2. It is sufficient to show (4.10) again to
prove that the limits in question exist. By definition,

!k
k+1(ok)=.k*

(!k+1
k+1(ok+1))(ak)=.k*

(#k+1(*k+1(o$k+1)))(ak).

By the controlling property, its F k field r completely determines the last
expression via #k . By the identification property (4.14) and the aggregation
property (4.22),

r=*k+1(o$k+1)([ak B$k , (ak+1) B$k&1])=*k(o$k+1+akB$k)=*k(o$k).

By definition, !k
k(ok)=#k(*k(o$k)) which proves the statement.

2. Let us show (4.26).

Proof. We use induction on i, from k down to 1. The case i=k says

!k(Ck(y$k&ak)) .F k=*k(C$k(y$k&ak))

which follows from the definition of !k. Assume that the statement was
proved for numbers >i: we prove it for i. By the definitions of X(y, i) and
!i and by (4.20) we have

!i (oi+X(y, i))=!i (oi+1+X(y, i+1)+ y$iBi)

=.i*
(!i+1(oi+1+X(y, i+1)))(y$i)=21 . (4.28)

By induction,

!i+1(oi+1+X(y, i+1)) .F i+1=*i+1(o$i+1+X$(y, i+1))=*i+1(z)

where z=o$i+1+X$(y, i+1) can also be written in the form C$i+1(x) for
some x. Now we have, by the identification property (4.14) and the
aggregation property (4.22)

21 .F i=*i (z+ yiBi)=*i (o$i+1+X$(y, i+1)+ yiBi)=*i (o$i+X$(y, i))

(4.29)

where the third equality is implied by the definition of X$(y, i). K

In analogy with (4.12), we will denote this code as follows:

!1
k=1 (*; k, 9)=1 (*; k),

(4.30)
!1=1 (*; �, 9)=1 (*; 9)=1 (*).

89Reliable Cellular Automata with Self-Organization

File: 822J H28946 . By:XX . Date:14:02:01 . Time:15:28 LOP8M. V8.B. Page 01:01
Codes: 2413 Signs: 1431 . Length: 44 pic 2 pts, 186 mm

1 is the limit code with approximations 1 (} ; k) and the function X(y) is the
site map of the system 9. Note that for finite space size N, we have
1 (*)=1 (*; k) for the largest k with Bk�N.

The proof also shows that X(y; k) plays the role of the site map for the
approximation:

!1
k(X(y; k)) .F 1=*1(y). (4.31)

The growth of the quotients X(y)�y is a measure of how the infinite
code stretches its input, i.e., of the ``space redundancy.'' (Strictly speaking,
the redundancy is defined as X(y)�y&1.) The value X(y; k)�y for each
approximating code is limited since it stretches blocks of size B$k into
blocks of size Bk . If a code has qk=Qk as in the example below then
X(y)= y.

Example 4.8. Let us show a variant of Example 4.5 with qk=Qk .
The details can be skipped at first reading.

Field F k is a binary string of length lk=l1Q1 } } } Qk&1 . Let s # Sk+1 ,

w=.k*
(s),

v(a)=w(a) .F k (a=1,..., Qk&1).

The information symbols of the code are v(a) for 0<a<Qk&1. Let the
positive integers mk , nk be such that

mk hk=lk , mknk�Qk .

A narrower track w .H k contains the error-check bits for the same informa-
tion, where |Hk|=hk (see Fig. 6). For each 0�i<nk , the concatenation of
strings w(a) .Hk with a # [imk , (i+1) mk&1] will be denoted

v(i+Qk).

These are the error-check symbols. With the code of Example 4.6, we have
nk=2t and Qk+nk=N. The redundancy of the code is 1�mk . See Fig. 6.

Fig. 6. Error-correcting code in a shared field, with at least one information bit per cell.

90 Ga� cs

Proposition 4.9. In the example above, �k 1�mk<�.

Proof. For the capacity of the cells in Mk we have

&Sk&=lk+hk+rk=lk(1+1�mk)+rk

where rk is the number of bits not belonging to F k or Hk. The state of a
cell of Mk+1 must be stored in the fields of the cells of the colony repre-
senting it, excluding the error-correcting bits in Hk. Hence

lk+1+hk+1+rk+1�Qk(lk+rk),

hk+1�Qk rk&rk+1 ,
(4.32)

1�mk+1�rk �lk&rk+1 �lk+1 ,

:
�

k=2

1�mk�r1 �l1 . K

4.1.5. Infinitely Many Fields

The above construction will be used mainly to encode the input *1

into the configuration !1, and to find the sites where the output can be
retrieved. The information is kept on each level k in field F k. In the case
when besides information storage also computation will be going on,
several configurations may have to be encoded, representing e.g., the out-
put of the same computation at different times (see Subsection 6.5).

Here we will set up the framework for coding infinitely many sequen-
ces, each to it own track. Since any infinite sequence can be broken up into
infinitely many infinite subsequences this elaboration is routine, but it is
worth fixing some notation. Readers interested only in information conser-
vation can skip this construction.

Let us be given, for k=1, 2,..., 0�i<k,

9=(Sk , Qk , .k*
, (F k

j)k
j=1 , qk , pk , #k)k�1 (4.33)

such that 2<qk+ pk�Qk , and in code .k*
the following properties hold:

(a) For each k, field �j�k F k
j controls ak via #k ;

(b) F k
j is identified with F k+1

j over [0, qk+ pk&1] if j<k and over
[0, qk&1] if j=k;

(c) F k
k over qk+[0, pk&1] is identified with F k+1

k+1 .

91Reliable Cellular Automata with Self-Organization

Such a system will be called a standard system of shared fields and we will
write

F k
j =F k

j (9).

For simplicity, we only consider infinite space.

Proposition 4.10. For a standard system of shared fields 9 as in
(4.33), there are functions Xj (y, 9)=Xj (y) with Xj (0)=0 such that for any
infinite sequence dj of integers and any infinite sequence of configurations

*j # (S1 .F 1
1)Z for j�1

there are configurations !k such that for all k, j�1, y # Z we have

.k*
(!k+1)=!k,

(4.34)
!1(Xj (y)+dj Bj) .F 1

1=*j (y).

The proof of this proposition is routine computation, so we omit it
here. The sequence dj gives additional freedom of shifting the origins
independently for each j. In analogy with (4.12) we define

!1=1 ((*j); 9)=1 ((*j))
(4.35)

!1
k=1 ((*j); k, 9)=1 ((*j); k)

and call 1 () the limit code and Xj (y) the site map of this many-field
hierarchical code. We may want to use the same configuration *1 for
each *j : e.g., if we start the computation on infinitely many levels
simultaneously, from the same input.

4.2. The Active Level

In the (preliminary) definition of error-correction in Subsection 3.6, we
used a code .

**
P.

*
. Let us discuss the typical structure of the codes

.k**
belonging to a hierarchical code. If .k**

coincides with .k*
over

the field F k, i.e., for all k, s, a we have .k**
(s)(a).F k=.k*

(s)(a) .F k then
we will say that (F k) are broadcast fields resp. shared fields with respect
to .k**

, too, whenever they are such in the code .k*
. Next, we give a

slight refinement of this notion for the case of reliable computation.

92 Ga� cs

The definitions given here are only needed if the cellular automata are also
meant to be used for computation: they are not strictly needed if the goal
is only information storage. However, it will be convenient to use them
even in that case.

For a shared field, essentially the same space can be used to store the
track F k as the one used for F k+1 since the information on the two tracks
is the same. Therefore these fields cannot be used by the different levels
independently of each other for computation. The mechanism enforcing
this is the error-correction property which restricts the value of F k by the
value of F k+1 (with which it is identified). Thus, changing the information
in track F k we change it on all levels below. We should therefore know
which level is the ``active'' one, the one being changed directly rather than
as a consequence of the code constraints. This level should not be disturbed
by error-correction coming from higher levels.

The active level will be marked in the following way. Let us be given,
for k=1, 2,..., new fields Gk with |Gk|=2. The four possible values of Gk

will be identified with &1, 0, 1, V. We will say that (F k, Gk) define a
sequence of guarded shared fields if the following properties hold:

(a) For all 0�a<Q,

.k**
(s)(a) .Gk={&1

V
if s .Gk+1�0,
otherwise;

(b)

.k**
(s)([0, qk&1]) .F k={s .F k+1

V } } } V
if s .Gk+1�0,
otherwise.

Notice that since .k**
P.k*

, this also imposes some conditions on (.k*
).

Typically, for a certain k we will have !i (}) .Gi>0 for all i>k,
!k(}) .Gk=0, and ! i (}) .Gi<0 for i<k. This distinguished k will show the
``active'' level, on which the field F k can be changed: Gk shows whether we
are on, below or above the active level. The fact !k+1(}) .Gk+1>0 will
imply that the level (k+1) does not restrict us from changing !k(x) .F k

(e.g., by computation). The levels below the active one are the ones subject
to error-correction coming from F k since the properties imply that the F i

for all i<k behaves like a shared field in code (.i**
) just as it does in code

(.i*
). The guard field Gk+1 is broadcast whenever it is negative.
With a guarded shared field, if the active level is k then the definition

of 1 (u1 ; k)=!1
k in (4.12) will always imply the additional property

!k
k(x) .Gk=0 (4.37)

93Reliable Cellular Automata with Self-Organization

for all x. Subsequent codings by .(k&1)*
, etc. imply ! i

k .Gi=&1 for i<k.
The active level � will mean !k

k(x) .Gk=&1 for all k. All propositions in
the present section about the existence of encoded configurations, can be
enhanced to include a guard field, with an arbitrarily chosen active level
(possibly �).

Remark 4.11. 1. All the tracks F k for different k ``can use the
same space'' since Gk+1 has the information showing the way F k depends
on F k+1. However, each track Gk must be represented in new space since
Gk is not identified with Gk+1.

2. The only place in the present paper where the possibility of chang-
ing the Gk field is exploited is 5.2.1.

4.3. Major Difficulties

The idea of a simulation between two perturbed cellular automata is,
unfortunately, flawed in the original form: the mapping defined in the naive
way is not a simulation in the strict sense we need. The problem is that
a group of failures can destroy not only the information but also the
organization into colonies in the area where it occurs. This kind of event
cannot therefore be mapped by the simulation into a transient fault unless
destroyed colonies ``magically recover.'' The recovery is not trivial since
``destruction'' can also mean replacement with something else that looks
locally as legitimate as healthy neighbor colonies but is incompatible with
them. One is reminded of the biological phenomena of viruses and cancer.
Rather than give up hope let us examine the different kinds of disruption
that the faults can cause in a block simulation by a perturbed cellular
automaton M1 .

Let us take as our model the informally described automaton of Sub-
section 3.5. The information in the current state of a colony can be divided
into the following parts:

v ``information:'' an example is the content of the Info track.

v ``structure:'' the Addr and Age tracks.

v ``program:'' the Prog track.

More informally, ``structure'' does not represent any data for decoding but
is needed for coordinating cooperation of the colony members. The
``program'' determines which transition function will be simulated. The
``information'' determines the state of the simulated cell: it is the ``stuff ''
that the colony processes.

94 Ga� cs

File: 822J H28951 . By:XX . Date:14:02:01 . Time:15:28 LOP8M. V8.B. Page 01:01
Codes: 2593 Signs: 2105 . Length: 44 pic 2 pts, 186 mm

Disruptions are of the following kinds (or a combination of these):

(1) Local change in the ``information;''

(2) Locally recognizable change in the ``structure;''

(3) Program change;

(4) Locally unrecognizable change in ``structure.''

A locally recognizable structure change would be a change in the
address field. A locally unrecognizable change would be to erase two
neighbor colonies based, say, at BQ and 2BQ and to put a new colony in
the middle of the gap of size 2BQ obtained this way, at position 1.5BQ.
Cells within both the new colony and the remaining old colonies will be
locally consistent with their neighbors; on the boundary, the cells have no
way of deciding whether they belong to a new (and wrong) colony or an
old (and correct) one.

The only kind of disruption whose correction can be attempted along
the lines of traditional error-correcting codes and repetition is the first one:
a way of its correction was indicated in Subsection 3.5. The three other
kinds are new and we will deal with them in different ways.

To fight locally recognizable changes in the structure, we will use the
method of destruction and rebuilding. Cells that find themselves in struc-
tural conflict with their neighbors will become vacant. Vacant cells will
eventually be restored if this can be done in a way structurally consistent
with their neighbors.

To fight program changes, our solution will be that the simulation will
not use any ``program'' or, in other words, we ``hard-wire'' the program
into the transition function of each cell. We will not lose universality this
way: the automata will still be universal, i.e., capable of simulating every
other automaton by appropriate block simulation; but this particular
simulation will differ from the others in that the transition function will
perform it without looking at any program. See Fig. 7.

To fight locally unrecognizable changes, we will ``legalize'' all the
structures brought about this way. Consider the example where a single

Fig. 7. An amplifier in which the simulations .k* are ``hard-wired.''

95Reliable Cellular Automata with Self-Organization

colony sits in a gap of size 2BQ. The decoding function is defined even for
this configuration. In the decoded configuration, the cell based at site 0 is
followed by a cell at site 1.5BQ which is followed by cells at sites 3BQ,
4BQ, etc. Earlier, we did not have any use for these illegal configurations.
We must legalize them now. Indeed, since they can be eliminated only with
their own active participation, we must have rules (trajectory conditions)
applying to them. This is the real reason for the introduction of generalized
cellular automata.

The generalized cellular automaton actually needed will be called a
robust medium. The generalization of the notion of the medium does not
weaken the original theorem: the fault-tolerant cellular automaton that we
eventually build is a cellular automaton in the old sense. The more general
media are only needed to make rules for all the structures that arise in
simulations by a random process.

5. MAIN THEOREMS IN DISCRETE TIME

Some theorems starting with the present section will have names of the
form ``(FCA, [description])'' where [description] gives a shorthand
characterization of the properties of the automaton constructed.

5.1. Relaxation Time and Ergodicity

5.1.1. Ergodicity

Let

Sn=S([&n, n] & Z)d

be the set of configurations on the segment [&n, n] & Z. Then we can view
s # Sn as the vector (s&n ,..., sn). For a measure & over configurations, let

&(s)=&[!(i)=si , i=&n,..., n]. (5.1)

For n=0, we have the special case &(s)=&[!(0)=s]. A sequence &k of
measures weakly converges to measure & if for for all n, for each s # Sn we
have limk &k(s)=&(s).

If (+, ') is a random trajectory of a probabilistic cellular automaton
then let +t be the distribution of the configuration '(} , t). Then there is a
linear operator P (called the Markov operator) determined by the transi-
tion function P(s, r) such that +t+1=P+t. To show this it is enough to

96 Ga� cs

show how +1(s) is determined by +0. According to the definition of a trajec-
tory, we have

+1(s)=:
r

`
n

j=&n

P(sj , (rj&1 , rj , rj+1)) +0(r) (5.2)

where the summation goes over all possible strings r # Sn+1 .
We call a measure : over configurations invariant if P:=:. It is well-

known and easy to prove using standard tools (see a reference in ref. 27)
that each continuous linear operator over probability measures has an
invariant measure. The invariant measures describe the possible limits (in
any reasonable sense) of the distributions +t. A probabilistic cellular
automaton is called ergodic if it has only one invariant measure. It is called
mixing if also for every possible measure +0 over configurations, +t=Pt+0

converges to one and the same invariant measure. Intuitively, if a process
is mixing then the distributions +t will look more and more like the
invariant measure and contain less and less information about the initial
distribution +0. In other words, all information about the initial configura-
tion will be eventually lost.

Remark 5.1. Consider a discrete-time Markov process over a com-
pact space. For an initial distribution +, let P+ be the measure for the whole
process. Let us define the translation operators: (T $')(x, t)='(x, t+1) for
space-time configurations, (Tg)(')= g(T $') for functions over space-time
configurations. Traditionally, the process with initial distribution + is called
mixing if for each time t, each pair of continuous functions f, g where f is
defined over the <t sigma-algebra, we have

| fT sgdP+&| fdP+ | T sgdP+ � 0

as s � �. It can be seen that a probabilistic cellular automaton is mixing
in our sense if each process obtained from it by choosing some initial dis-
tribution is mixing in this traditional sense.

A noisy cellular automaton, whenever the set of sites is finite, is a finite
Markov chain with all positive transition probabilities. This is mixing by a
well-known elementary theorem of probability theory. If the set of sites is
infinite then noisiness does not imply even ergodicity.

Remark 5.2. No examples are known of noisy cellular automata
over an infinite space that are ergodic and not mixing.

97Reliable Cellular Automata with Self-Organization

File: 822J H28954 . By:XX . Date:08:01:01 . Time:14:44 LOP8M. V8.B. Page 01:01
Codes: 2266 Signs: 1693 . Length: 44 pic 2 pts, 186 mm

Fig. 8. The Toom rule's effect on a large triangular island.

The first example of a non-ergodic noisy cellular automaton was given
by Toom. (See e.g., ref. 27.) One of the simplest deterministic cellular
automata R given by Toom can be defined as follows. We start from a
two-dimensional deterministic cellular automaton R with set of states
[0, 1], by the neighborhood H=[(0, 0), (0, 1), (1, 0)]. The transition func-
tion TrR(x1 , x2 , x3) is the majority of x1 , x2 , x3 . Thus, in a trajectory of R,
to obtain the next state of a cell, take the majority among the states of its
northern and eastern neighbors and itself. Toom showed that the rule R
remembers a field (namely the whole state of the cell) in the sense defined
in Subsection 2.5 and is hence non-ergodic. See Fig. 8.

Remark 5.3. The notion of ergodicity was defined only for trajec-
tories of R= that are also trajectories of some probabilistic cellular
automaton R$ (as defined in Subsection 2.3) such that R$/R= , i.e., that all
trajectories of R$ are trajectories of R= . The difference between R= and R$
is that the local transition probabilities of a trajectory of R$ are fixed and
the same everywhere in space-time, while R= requires them only to be
within some range. Toom's theorem implies that no such R$ is ergodic.

5.1.2. Relaxation Time: A Measure of Information Loss

Some readers, computer scientists in particular, may want to know
already now what relevance can results on inifinite cellular automata have
on have on the possibilities of computation or information storage in finite
systems. We will try to answer this question here. To stay in the context
of the Toom rule, let us consider a (finite or infinite) two-dimensional

98 Ga� cs

space C. With an extension of the notation (5.1) to two dimensions (where
s is now the array (sij : &n�i, j�n)), for any fixed n, let us define the
variation distance for + and & when the latter are restricted to Sn :

d n(+, &)=: [|+(s)&&(s)| : s # Sn]

Of course, 0�dn(+, &)�2. Distance 2 means that the two measures have
disjoint support. Consider a set of sites

Cm=Zm_Zm

where m can be finite or infinite. Suppose that for some m, the local transi-
tion matrix (for simplicity, with nearest-neighbor interaction) gives rise to
a mixing Markov process with Markov operator Pm . Let

Dn
m(t)=�

+, &

d n
m(Pt

m+, Pt
m&)

Remark 5.4. It is easy to see that this is equal to

�
r, s

d n
m(P t

m&r , P t
m &s)

where &s(s)=1, i.e., &s is the measure concentrated on configuration s.

Notice that Dn
m(t) is monotonically decreasing in t since, e.g., for

invariant +m ,

d n
m(P t+u

m &, +m)=d n
m(P t

m(Pu
m&), +m).

Pm is mixing if and only if for each s, & we have Pt
m &(s) � +m(s). By the

weak compactness of the space of measures, this is equivalent to saying
that

lim
t

Dn
m(t)=0

holds for all n. The mixing of Pm implies that there is an integer function

rm(n, $)

with Dn
�(t)<$ for all t�rm(n, $). We will call rm(n, $) the relaxation time.

This is obviously an increasing function of n (defined only for n�
(m&1)�2) and a decreasing function of $. In the cases we are interested in,
the order of magnitude of rm(n, $) as a function of n does not change fast

99Reliable Cellular Automata with Self-Organization

with the change of $: rm(n, 0.1)) is not much larger than rm(n, 1.9). This
means that once +m is not separated well from any P t

m & it soon becomes
fairly close to all of them. Therefore we will generally consider $ fixed.

5.1.3. Relaxation Time as a Function of Space Size

If m<� then the medium is always mixing. Assume now that the
medium is also mixing for m=�: we try to understand the implications of
this fact for finite m. We have the following relation:

Lemma 5.5. For all n<(m&1)�2, for all $ with r�(n, $)<
(m&1)�2&n we have

rm(n, $)�r�(n, $).

This means that if the medium is mixing for m=� then increasing m
in the case of m<� does not increase the relaxation time significantly for
any fixed n: in each segment of length n of any finite medium, information
is being lost at least as fast as in the infinite medium.

Proof. Take m, n, $ satisfying the above conditions and let r=
r�(n, $). Due to the monotonicity of Dn

m(t), it is enough to prove that
Dn

m(r)�Dn
�(r). Take a measure & over configurations of Cm , this will give

rise to some measure &� over configurations of period m in C� in a natural
way, where &� is such that for all n<(m&1)�2 and all s # Sn we have
&�(s)=&(s). Then, r<(m&1)�2&n implies 2n+1+2r<m and therefore
via (5.2) we have

Pr
m&(s)=Pr

�&�(s). K

We found that mixing of P� implies a kind of uniform forgetfulness in
the sense that increasing the size m of the space does not help increasing
the relaxation time beyond r�(n, $).

5.1.4. Forgetfulness: A Variant of Ergodicity

Non-ergodicity does not express quite adequately the losing of all
information about the initial configuration in case of cellular automata,
where namely the space-time is translation-symmetric (this was noticed by
Charles Radin and Andrei Toom).

Let !0 be the configuration over the one-dimensional integer lattice that
is 0 in the even places and 1 in odd places, and !1 the one that is 1 in the even
places and 0 in the odd places. Let + i be the measure concentrated on !i

and let P be the linear operator obtained from some transition function.

100 Ga� cs

Suppose that the measures Pn+0 converge to some measure &0 . Then the
measures Pn+1 converge to some measure &1 . Even if &1 is different from &0

they differ only by a translation in space. If the translations of &0 are the
only invariant measures of P then we would still say that in some sense,
P loses all information about the initial configuration: we might say, it
loses all ``local'' information. Indeed, a cell has no way of knowing whether
it has even or odd coordinates.

We can say that P is strongly not forgetful if it has two disjoint
(weakly) closed translation-invariant sets of measures. Our non-ergodic
examples all have this property.

5.2. Information Storage and Computation in
Various Dimensions

Let us be given an arbitrary one-dimensional transition function Tr
and the integers N, L. We define the three-dimensional transition function
Tr$ as follows. The interaction neighborhood is H_[&1, 0, 1] with the
neighborhood H defined in Subsection 5.1 above. The transition function
Tr$ says: in order to obtain your state at time t+1, first apply the transi-
tion function R in each plane defined by fixing the third coordinate. Then,
apply transition function Tr on each line obtained by fixing the first and
second coordinates. (The papers in refs. 14 and 11 use a neighborhood
instead of H that makes some proofs easier: the northern, south-eastern
and south-western neighbors.)

For an integer m, we define the space C=ZN_Z2
m . For a trajectory

! of CA(Tr) on ZN , we define the trajectory ` of CA(Tr$) on C by

`(i, j, n, t)=!(n, t). (5.3)

Thus, each cell of CA(Tr) is repeated m2 times, on a whole ``plane'' (a torus
for finite m) in C.

It is proved in earlier work that there are constants =0 , c1 , d1>0
such that the following holds. For all N, L, and m=c1 log(NL), for any
trajectory ! of CA(Tr) over ZN , if the trajectory ` of CA(Tr$) is defined by
(5.3) then for any =<=0 , any trajectory (+, ') of CA=(Tr$) such that
'(} , 0)=`(} , 0) we have for all t in [0, L] and all w # C

+['(w, t){`(w, t)]�d1=.

This theorem says that in case of the medium CA=(Tr$) and the trajectories
(+, `), the probability of deviation can be uniformly bounded by d1 =. The
trajectories ' encode (by (5.3)) an arbitrary computation (e.g., a universal

101Reliable Cellular Automata with Self-Organization

Turing machine), hence this theorem asserts the possibility of reliable com-
putation in three-dimensional space. The coding is repetition O(log2(NL))
times, i.e., it depends on the size N } L of the computation. The decoding is
even simpler: if a plane of C represents a state s of a cell of CA(Tr) then
each cell in this plane will be in state s with large probability. The simula-
tion occurs in ``real time.''

The original proof of a slightly weaker version of this result used a
sparsity technique borrowed from ref. 10. In its current form, the theorem
was proved in ref. 5 using an adaptation of the techniqe of ref. 27.

Theorem 2.5 shows that one-dimensional noisy and strongly not
forgetful probability operators exist. The proof of that theorem seems to
require almost the whole complexity of the constructions of the present
paper (though the continuous-time case adds some additional nuisance to
each part of the proof). Once the basic structure (an amplifier, as asserted
in Lemma 3.7) is in place, the simulations in it support arbitrary computa-
tional actions and allow the formulation of several other theorems.

The following theorem asserts the possibility of storing much more
information. For the finite version, recall the definition of Visible(k, N) in
(4.23).

Theorem 5.6 (FCA, 1-dim, storage, discrete time). There is

v a transition function Tr$ with a statespace having a field F 1;

v a hierarchical code 9 with a shared field (F k) as in (4.13) such that
|Visible(K(N), N)|=N;

v constants d1 , c2>0;

such that for h2(n)=nc2 � log log n, for all =>0, t>0, for any configuration *
with states in S .F 1, trajectory ' of CA=(Tr$) over C=ZN (for finite or
infinite N) with initial configuration 1 (*; 9), for all y in Visible(K(N), N),
we have

Prob[*(y){'(X(y; 9), t) .F 1]<d1 =+t=h2(N).

The code can be chosen to have X(y; 9)= y.

The function =&h2(N) shows the length of time for which a space of size
N can hold information.

A fault-tolerant computation is the trajectory of some perturbed
medium CA=(Tr$) simulating the trajectory of an arbitrary deterministic
medium. The simulated transition function Tr is arbitrary, but we might as
well choose it to be a fixed universal cellular automaton. Then CA(Tr$) can
be called a ``universal fault-tolerant cellular automaton.'' The exact form of

102 Ga� cs

the theorems formulating the possibility of reliable computation is some-
what arbitrary. It may seem more natural if the input of the computation
is not given in the initial configuration but is being fed through some cell
throughout the time of the computation. There are several choices also
concerning simplicity, the tradeoffs of space- and time-redundancy, etc.
These theorems should be considered therefore as just illustrations of the
possible use of the amplifiers of Lemma 3.7.

The basic idea is to implement a large but finite computation of Univ
by choosing the ``active level'' k mentioned above so large that during the
planned computation, it is unlikely that there will be any fault at all in the
work of medium Mk . If the computation involves N cells and L steps then
this means that we should have, say, NL=k<1�3. Theorem 5.8 realizes this
idea. In it, there are still several choices: simpler encoding at the price of
larger space redundancy, or more complex encoding at the price of less
space redundancy and more time redundancy.

To formulate the theorems exactly, let Tr be any deterministic transition
function with distinguished fields Input, Output in the standard alphabet.
We say that Tr has monotonic output if for all trajectories ' of CA(Tr) we
have

'(x, t) .OutputP'(x, t+1).Output.

We call the transition function Tr, all of whose fields have even size (i.e.,
they are in the standard alphabet) together with some distinguished fields
Input, Output, a standard computing transition function if it

(a) is a separable transition function as defined in 2.2.1;

(b) never changes Input;
(c) has monotonic output;

(d) never changes anything if one of the three arguments is vacant or
if the middle argument has all *'s in its input field, or if all three
arguments have V in all their fields.

Remark 5.7. The Input and Output fields here have nothing to do
with the Inbuf and Outbuf fields introduced in 2.2.1. These are input and
output of a certain large-scale computation, while Inbuf and Outbuf con-
cern the step-for-step interaction of a cell with its neighbors.

Let S be the set of states for Tr, and let * # (S .Input)Z be an ``input
configuration.'' Then the configuration

`=Init(*) (5.4)

with states in S, is constructed as follows.

103Reliable Cellular Automata with Self-Organization

(a) For all x # Z, `(x) .Input=*(x) and `(x) .Output is filled with V;

(b) For all x # Z, all other fields of `(x) are filled with V.

If * is a configuration in SZ where &S& is even, i.e., elements of S can be
viewed as strings in the standard alphabet, then we say that * is supported
by interval I if *(x)=V } } } V or vacant for all x � I. The support of * is
defined to be the smallest interval supporting * and containing 0. Let

Supp(*) (5.5)

be the support of *. For a space-time configuration ` of a standard com-
puting medium, let

Supp(`, t)= .
u�t

Supp(`(} , u)). (5.6)

Theorem 5.8 (FCA, 1-dim, discrete time, known bounds).
Let Tr be a standard computing transition function. There is

v a transition function Tr$ with a statespace having a field Output1;

v constants d1 , c0 , c1>0;

v a hierarchical code with a shared field defined by 9 as in (4.13)

such that for h0(t)=log log t+c0 , h1(t)=t } (c1 log t)5 log log log t, for all =, s, t>0,
for any trajectory ` of Tr over Z with `(} , 0) of the form Init(*) (see (5.4))
satisfying 2 |Supp(`, t)|�s, for any finite K�h0(t) and possibly infinite N
satisfying Supp(`, t)/Visible(K, N), for any trajectory ' of CA=(Tr$) over
C=ZN with initial configuration 1 (*; K, 9), for all y # Supp(`, t), we have

Prob[`(y, t) .OutputP� '(X(y; K, 9), h1(t)) .Output1]<d1=

The code can be chosen to have X(y; K, 9)= y and |Visible(K, N)|=N.

Thus, to find a computation result `(y, u) of CA(Tr), from some input,
we must do the following. Find a bound s on 2 |Supp(`, t)| (the amount of
space required by the computation if we put the origin somewhere into the
input), then the level K�h0(t) on which the trajectory ' of the fault-
tolerant automaton CA=(Tr$) carries out the computation to the desired
stage u with the desired reliability until step t. Embed the input into a
configuration * whose support contains 0. Encode * into an initial con-
figuration 1 (`(} , 0); K) in a space whose size N is large enough to have
Supp(`, t)/Visible(K, N). ``Run'' the trajectory ' until time h1(t), (it will

104 Ga� cs

be programmed to keep the active level at K), and finally look up the
result in site X(y; K). Due to monotonic output, it is always possible to
look up the result later. If you look at it too early the worst thing that can
happen is that it will still be undefined.

The function h1(t)�t measures time redundancy while X(y; h0(t))�y mea-
sures space redundancy (which, as the theorem says, can be made constant).

The above theorem strengthens the result of ref. 10 by eliminating the
need for the decoding of the computation result: we just have to look in the
right place for it. In two dimensions such a construction was given in
ref. 11. The time redundancy in that paper is O(log2+$(NL)) where N, L
are the upper bounds on the space and time requirements of the computa-
tion. We believe that this two-dimensional time redundancy can be reduced
to log1+$(NL).

5.2.1. Adaptive Encoding

Theorem 5.8 is not entirely satisfactory since its initial encoding (the
active level) depends on the knowledge of a time and space bound on the
whole computation. It is possible to remove this limitation. Instead of
formulating the theorem, we just describe the idea of the construction. The
initial encoding populates the space with cells of Mk for all k<K(N) where
N is the space size. Chose a level k1 of encoding for the computation input
depending only on the size of the input. For an appropriately chosen
(universal) increasing sequence (Lk), after Lk computation steps have been
simulated, the active level will be raised from k to k+1. The parameters k1

and (Lk) are chosen to guarantee with high probability that none of level
k cells involved in the actual computation will fail before the level will be
raised to k+1.

5.2.2. Self-Organization

In the just-discussed hierarchical fault-tolerant computations, the initial
configuration is highly non-uniform since it encodes the hierarchy of simu-
lations described above. If we forgo this initialization then the hierarchy
must apparently be built up spontaneously. Initially, all sites in the media
M2 , M3 ,... could be vacant but cells could emerge spontaneously, as lower-
level cells organize themselves (with the help of some randomness) into
colonies simulating higher-level cells. We call this feature self-organization,
but postpone its formal definition a few sections later.

6. MEDIA

An abstract medium has been defined in 3.3 as essentially a set of
stochastic processes called its trajectories. Let us narrow this category

105Reliable Cellular Automata with Self-Organization

somewhat. The kind of abstract medium considered in this paper will
simply be called a medium. We will also restrict the kind of simulations
among media to mappings that by their very form will obviously be
simulations: they will be called canonical simulations.

6.1. Trajectories

Here, we will show in what form the set of trajectories of a medium
will be given.

6.1.1. Weak Trajectories

In defining the conditions making up a medium we will make use of
inequalities of the form

Eg�b

where g is an event function (as defined in Subsection 2.3), measurable in
A(V) for some rectangle V.

Example 6.1. Let V=[a1+, a2]_[t+, u], B<d=0.2(a2&a1).
Suppose that we are given some r # S3, s # S. Let g=1 if there is a space-
time point (x, t0) in V, and an =<d such that '(x+iB, t)=ri for i=&1,
0, 1 during [t0&=, t0&] and '(x, t0)=s. Thus, the event g=1 marks a
certain kind of transition in the window.

A medium will be given by many such conditions. Let us fix an
arbitrary countable set T which will be called the set of condition types.
A medium is given as

M=Med(S, C, g(} , } , }), b(})). (6.1)

Here, S is the set of possible local states and C is the set of possible cell
sites. The space C can also be omitted whenever it is clear from the context.
For all types : # T and rational rectangles V, the medium assigns an event
function

g(:, V, ')

and a bound b(:) # [0, 1]. (We do not insist that g(:, V, }) be measurable
in A(V) though usually this will be the case.) Therefore from now on,
a local condition will be defined as a pair

(:, V).

106 Ga� cs

The set S is determined by g implicitly. Also, generally local conditions will
only be defined for small V, and in a translation-invariant way (in space,
but only almost so in time since the time 0 is distinguished). Therefore one
and the same pair g, b can serve for all sufficiently large finite spaces C as
well as the infinite space, just like with deterministic cellular automata,
where the same transition function determines trajectories in finite spaces
as well as the infinite space.

When we are given media M1 , M2 ,... then gi (), bi () automatically
refer to Mi .

Two local conditions are disjoint when their rectangles are. A random
space-time configuration ' will be called a weak trajectory if for each time
u�0, for each set of disjoint local conditions

(:i , Vi) i�N

with mini ?tVi�u, if h is an event function over Au then

E \h `
i

g(:i , Vi , ')+�Eh `
i

b(:i). (6.2)

This says that we can multiply the probabilities of violating local conditions
in disjoint windows, i.e., that these violations happen ``independently.''

6.1.2. Trajectories

The media we are going to be interested in have these three types of
condition.

(1) One type recognizes in V a certain kind of value called ``damage,''
and has b== for some small =;

(2) One type recognizes if there is no damage in V and the transition
does not occur according to a certain transition function. This has b=0.

(3) One type corresponds to some ``coin tossing'' event, and has
b=0.5+=$ for a suitable =$.

If we need coin-tossing (we need it only for the results on self-organization)
then we must also consider certain sets of conditions that are chosen
randomly. A random local condition is a (measurable) function (:, V('))
assigning a local condition to each space-time configuration '. We recall
the definition of stopping times from the theory of stochastic processes,
specialized to our present needs. A real random variable _ with values in
[0, �&] is a stopping time derived from ' if for each t the event [_�t] is

107Reliable Cellular Automata with Self-Organization

in At . Let A_ be the algebra of events A with the property that A & [_�t]
At . Assume that for each t in [0, �&] there is random variable V t(')
measurable in At with values that are rational rectangles with

?t V t(')/[t, �]

and such that with probability 1 the function V t(') is right semi-contin-
uous in t. This will be called a rectangle process derived from '. We mention
the following well-known fact from the theory of stochastic processes:

Theorem 6.2 (see ref. 21). V _ is a random variable measurable
in A_ .

We will omit the words ``derived from ''' when they are clear from the
context. A random-stopping local condition is given by a triple

(:, V t('), _) (6.3)

where : is a type, V t(') is a rectangle process and _ is a stopping time,
both derived from '. This condition is supposed to express the bound

Eg(:, V _, ')�b(:).

For some finite set N of indices, let us now be given a sequence

(:i , V t
i , _ i) i # N (6.4)

of random-stopping local conditions. It is is called a system of disjoint
random local conditions if (for almost all ') all the rectangles V _i

i (') are
disjoint, and there is a constant upper bound on the _i and a constant
segment containing all ?sV t

i . A random space-time configuration ' will be
called a trajectory if for each set of disjoint random local conditions as in
(6.4) with _i�u, if h is an event function over Au then

E \h `
i

g� (i, ')+�Eh `
i

b(:i) (6.5)

where

g� (i, ')= g(:i , V _i (')('), '). (6.6)

This also says that we can multiply the probabilities of violating local
conditions in disjoint windows, but requires that this be even true if the
windows are chosen by random stopping rules. See Fig. 9.

108 Ga� cs

File: 822J H28965 . By:XX . Date:14:02:01 . Time:15:28 LOP8M. V8.B. Page 01:01
Codes: 2108 Signs: 1197 . Length: 44 pic 2 pts, 186 mm

Fig. 9. A system of disjoint random local conditions.

6.1.3. Examples of Simple Media

Example 6.3. The first example will show how a PCA fits into
this framework. Let us be given a probabilistic cellular automaton
PCA(P, B, T). For each state vector r # S3 and state s, let us form type
:(s, r). This condition type says that the transition rules are obeyed at
times of the form nT. Then for cell x, time t of the form nT with n>0, let

g(:(s, r), [x]_[t&T+, t], ')

=['(x+iB, t&T)=ri (i=&1, 0, 1), '(x, t)=s],
(6.7)

b(:(s, r))=P(s, r).

For all cells x and rational times u we define some new type ;=;(x, u) by
b(;(x, u))=0 and

g(;(x, u), [(x, u)], ')=['(x, u){'(x, T wu�T x)].

This condition says that '(x, u)='(x, T wu�T x) with probability 1. For all
other combinations :, V we set g(:, V, ')=0. It is easy to see that the
trajectories of PCA(P, B, T) are trajectories of the medium defined this
way.

Example 6.4. The new conditions introduced below are ``loosened-
up'' versions of the above ones since it is not always desirable to be as restric-
tive. Let us be given a probabilistic cellular automaton PCA(P, B, T). For
each set of states E, and state vector r=(r&1 , r0 , r1) let

P(E, r)= :
q # E

P(q, r).

109Reliable Cellular Automata with Self-Organization

Let K be the set of functions K: S3 � 2S such that

K(r)/[s{r0 : P(s, r)>0]. (6.8)

For a space-time trajectory ' and a K # K let us write

K� (x, t, ')=K('(x&B, t), '(x, t), '(x+iB, t)).

For all K$, K" # K with K$#K" (i.e., K$(r)#K"(r) for all r), let

c(K$, K")=�
r

P(K"(r), r)
P(K$(r), r)

be the least upper bound, over r, on the conditional probability of getting
into the set K"(r) provided we get into the set K$(r). For each pair of such
functions K$#K" let us form the type

:=:(K$, K").

For each cell x and u�v of the form nT, let us form the rectangle
V=[x]_[u+, v]. For each such pair :, V let g(:, V, ')=1 if there is a
first t # [u+, v] with '(x, t) # K$(x, t&T, ') and in it, we have '(x, t) #
K"(x, t&T, '). Also, let b(:)=c(K$, K").

Proposition 6.5. If M is the medium defined by the conditions
above then PCA(P, B, T)/M.

Proof Sketch. The statement follows by a standard argument from
the strong Markov property of the Markov process PCA(B, B, T) (see
ref. 21). K

Example 6.6. Consider a continuous-time cellular automaton
CCA(R, B). For any functions K, K$, K" # K as in Example 6.4, let

R(K, r)= :
q # K

R(q, r),

c(K$, K")=�
r

R(K"(r), r)
R(K$(r), r)

.

We define each :(K$, K"), V=[x]_[u+, v] and g(:, V, ') as before, but
now for all rational u<v.

Theorem 6.7. Every trajectory of CCA(R, B) is a trajectory of the
medium defined in the above example.

110 Ga� cs

Proof Sketch. As in 2.4.1, for a small $>0, let M$=PCA(P, B, $)
with P(s, r)=$R(s, r) when s{r0 and 1&$ �s${r0

R(s$, r) otherwise. Then
a transition to the limit $ � 0 in Proposition 6.5 completes the proof. The
transition uses the fact that trajectories of M($) converge in distribution to
trajectories of CCA(R, B). K

Remark 6.8. Of course in both Proposition 6.5 and in Theorem 6.7,
instead of the first time with ' switching into K$ we could have asked about
the second time, or the third time, etc.

6.2. Canonical Simulations

6.2.1. Definition of Canonical Simulations

Let us introduce a special kind of simulation, that establishes certain
relations between the local conditions of the media and thus makes it easier
to prove it is a simulation. Let M1 , M2 be media and let .* be a mapping
from the space-time configurations of M1 into those of M2 : we will write
'*=.*('). We say that .* is the map for a canonical simulation if the
following holds. Let (:, V) be any local condition for M2 . Then there is a
system of random local conditions

(;(:, i, j), W t(:, i, j, V, '), {(:, i, j, V, ')) (6.9)

with i=1,..., n(:), j=1,..., k(:, i),

inf ?t V�{(:, i, j, V, ') (6.10)

such that for each fixed i, the subsystem containing elements for that i forms
a system of disjoint random local conditions with W t(:, i, j, V, ')/V, and,
defining

W� (:, i, j, V, ')=W {(:, i, j, V, ')(:, i, j, V, ')
(6.11)

g� 1(:, i, j, V, ')= g1(;(:, i, j), W� (:, i, j, V, '), ')

we have

g2(:, V, '*)�:
i

`
j

g� 1(:, i, j, V, '),
(6.12)

b2(:)�:
i

`
j

b1(;(:, i, j)).

111Reliable Cellular Automata with Self-Organization

A simulation map will be called a deterministic canonical simulation
when the system in (6.9) is deterministic: neither {(:, i, j, V, ') nor
W t(:, i, j, V, ') depends on '. Under the condition mentioned in the defini-
tion of weak trajectories (see (6.2)), we will be able to provide deterministic
canonical simulations and this is why weak trajectories are sufficient.
Canonical simulations are ``cooked up'' to make the following theorem
true.

Theorem 6.9 (Canonical Simulation). If .* is a canonical
simulation map then for each trajectory ' of M1 , the expression .*(')
defines a trajectory of M2 .

Proof. Let ' be a trajectory of M1 and (: l , V t
l , _l) l # N a system of

disjoint random local conditions in M2 . Let u be some time such that
_l�u for each l, and let h be an event function measurable in Au . We must
show

E \h `
l

g� 2(l, '*)+�Eh `
l

b2(:l)

where g� 2(l, `) is defined as in (6.6). By the assumption, for each l, V there
is a system of disjoint random local conditions

(;(:l , i, j), W t(:l , i, j, V, '), {(:l , i, j, V, '))

for i=1,..., n(:l), j=1,..., k(:l , i) with the properties defined for canonical
simulations. Since V has a countable range, we obtain measurable func-
tions even if we substitute V _l

l ('*) into V here. Let

V� l=V _l
l ('*)

and recall (6.11).

1. W�� t=W� t(:l , i, j, V� l , ') is a rectangle process and {(:l , i, j, V� l , ') is
a stopping time.

Proof. It is easy to see that ?t W�� t/[t, �] and that the process W�� t

is upper semicontinuous almost everywhere. Let us show that for each t it
is measurable in At . We write

W� t(:l , i, j, V� l , ')=W � �
V

(W� t(:l , i, j, V, ')=W 7V=V� l).

112 Ga� cs

Now (6.10) and {(:l , i, j, V, ')�t implies inf ?t V�t. On the other hand
by the definition of random-stopping local conditions, V=V� l (=V _l

l)
implies _l�inf ?tV. Hence we can write the above expression as

�
V

(W� t(:l , i, j, V, ')=W 7V=V _l
l) 7_ l�t.

By Theorem 6.2,

[_l�t 7 V=V _l
l] # At . (6.13)

By the definition of the rectangle process W t, also

[W� t(:l , i, j, V, ')=W] # At ,

hence indeed [W�� t=W] # At . Finally, we have to show

[{(:l , i, j, V� l , ')�t] # At .

As above,

{(:l , i, j, V� l , ')�t � �
V

({(:l , i, j, V, ')�t 7 V=V� l)

which again can be written as

�
V

({(:l , i, j, V, ')�t 7 V=V _l
l) 7 _ l�t.

We have [{(:l , i, j, V, ')�t] # At since {(:l , i, j, V, ') is a stopping
time; combining this with (6.13) completes the proof.

By (6.12) we have

g2(:, V� l , '*)�:
i

`
j

g1(:l , i, j, V� l , ') (6.14)

and

`
l

b2(:l)�`
l

:
i

`
j

b1(;(:l , i, j))= :
i(})

`
l, j

b1(;(:l , i(l), j))

where the last sum is over all functions i(}) with i(l) # [1, n(:l)]. Similarly,
by (6.14)

g2(:, V� l , '*)� :
i(})

`
l, j

g� 1(:l , i(l), j, V� l , ')

113Reliable Cellular Automata with Self-Organization

Therefore it is sufficient to show

E \h `
l, j

g� 1(:l , i(l), j, V� l , '+�Eh `
l, j

b1(;(: l , i(l), j)).

Let us fix a function i(l). Recall that by (6.11),

g� 1(:, i, j, V� l , ')= g1(;(:, i, j), W� (:l , i, j, V� l , '), ')

For any l, i, the rectangles W� (:l , i, j, V� l , ') are all disjoint and belong to
V� l . Also the sets V� l are disjoint, therefore all rectangles W� (: l , i(l), j, V� l , ')
are disjoint. Recall that also by (6.11),

W� (:, i, j, V� l , ')=W {(:, i, j, V� l , ')(:, i, j, V� l , '),

therefore the system

(;(:l , i(l), j), W� (:, i, j, V� l , '), {(:, i, j, V� l , '))

taken for all l, j, is a system of disjoint random local conditions with
u�{(:, i, j, V� l , '), and hence the proof is finished by the trajectory
property of '. K

6.2.2. Frequency of Switching Times

Adding certain conditions does not really change some media. Let us
call a canonical simulation injective if the mapping .* is the identity, and
the functions b2(:), g2(:, } , }) differ from b1 , g1 only in that they are defined
for some additional types :, too.

Proving a certain probability bound for the behavior of '1 within
some window does not create a canonical simulation yet: the bound must
be formulated in such a way that this type of probability bound can be
multiplied with itself and all the other bounds over a system of disjoint
windows (and these windows can even be chosen via stopping times).

Let us illustrate canonical simulations on the the following example.
The simulating medium M1 is the CCA of Example 6.6. The conditions to
add impose lower and upper bounds on the frequency of switching times
of M1 . Namely, for some function K # K let

a&1(K)=�
r

R(K(r), r)

a1(K)=�
r

R(K(r), r)

114 Ga� cs

Let us call a time u of the space-time configuration ' a K-switching-time of
a cell x if for all t<u sufficiently close to u we have '(x, u) # K(x, t, '), i.e.,
we have just jumped into the target set determined by K(}).

For some rational constant D>0, integers l�0 and j=&1, 1 let

g(:(K, D, k, j), [x]_[u+, u+D], ') (6.15)

be the event function of type :(K, D, k, j) for j=&1 [j=1] for the event
that site x has at most [at least] k times during [u+, u+D], that are
K-switching times.

Proposition 6.10. For each transition rate matrix R and function
K # K there is a function }(=)>0 such that for all k>0, defining, with
aj=aj (K)

b(:(K, D, (aj+ j=) D, j))=e&}(=) D unless j=1 and (a1+=) D=1,
(6.16)

b(:(K, D, 1, 1))=e&}(=) D 7 a1 D,

(and defining b(:(K, D, k, j))=1 for all other choices of k) the trajectories
of CCA(R, B) are also trajectories of the medium obtained by adding all
these conditions.

The proof proceeds by first estimating the event in question by sums
of products of single switching events and using then a standard large-
deviation estimate.

6.3. Primitive Variable-Period Media

We say that Tv>0 is a dwell period lower bound of a space-time con-
figuration ' if no dwell period of ' is shorter than Tv. A continuous-time
cellular automaton has no such lower bound.

In the amplifier M0 , M1 ,... we will construct eventually on top of a
continuous-time probabilistic cellular automaton M0 , all abstract media
M1 , M2 ,... will have a dwell period lower bound, only M0 will not have
one. M1 will be a so-called primitive variable-period medium: these can be
considered the continuous-time extension of the notion of an =-perturba-
tion of a deterministic cellular automaton with coin-tossing. On the other
hand, M2 , M3 ,... will only fit into a more general framework (non-adjacent
cells).

Let us thus proceed to the definition of medium

Prim�var(S, C, Tr, B, Tv, Tv, =).

115Reliable Cellular Automata with Self-Organization

The set S of states is implicit in the transition function therefore from now
on, it will be omitted. We have dwell period lower and upper bounds
Tv�Tv and a failure probability bound =>0. The local state, as in
Example 2.4, is a record with two fields, Det and Rand, where Rand
consists of a single bit which is, say, always the first bit.

To simplify the upper-bounding of dwell periods, we assume that the
transition function has the property

Tr(r&1 , r0 , r1) .Det{r0 .Det. (6.17)

For a space-time configuration ', site x and rational number a>0 let
_1=_1(x, a, '), and _2 be the first and second switching times t>a of '
in x. Let us list the different types of local condition.

(a) Conditions of type :(dw� p�lb) imposing Tv as a dwell period
lower bound. We have b(:(dw� p�lb))==, and

g(:(dw� p�lb), [x]_[a, a+Tv], ')

is the event function saying that '(x, t) has two switching times closer than
Tv to each other during [a+, a+Tv&].

(b) Conditions of type :(dw� p�ub) imposing Tv as a dwell period
upper bound. We have b(:(dw� p�ub))==, and

g(:(dw� p�ub), [x]_[a+, a+Tv], ')

is the event function saying that '(x, t) has no switching times in
[a+, a+Tv].

(c) Conditions of type :(comput) saying that the new value of the
Det field at a switching time obeys the transition function. We have
b(:(comput))==, and

g(:(comput), [x]_[a, a+2Tv], ')

=['(x, _2) .Det � [Tr(', x, t, B) .Det : t # [_1 , _2&Tv�2]]].

Here we used the notation (3.2).

(d) Conditions of type :(coin, j) for j=0, 1 saying that the new
value of the Rand field at a switching time is obtained nearly by a fresh
coin-toss:

b(:(coin, j))=0.5+=,

g(:(coin, j), [x]_[a, a+Tv], ')=['(x, _2) .Rand= j].

116 Ga� cs

Condition (c) says that unless an exceptional event occurred, whenever a
state transition takes place at the end of a dwell period [_1 , _2] it occurs
according to a transition made on the basis of the states of the three
neighbor cells and the random bit at some time in the observation interval
[_1 , _2&Tv�2]. Since the observation interval does not include the times
too close to _2 , information cannot propagate arbitrarily fast.

Example 6.11. All trajectories of the ordinary deterministic cellular
automaton CA(Tr, B, T) are also trajectories of Prim�var(Tr, B, T, T, 0).

Theorem 6.12 (Simulation by CCA). For medium

M=Prim�var(Tr, 1, Tv, 1, =)

with (6.17) and Tv<1 there is a noisy transition rate R(s, r) over some
state space S$ and a function ?: S$ � S such that ?('(x, t)) is a trajectory
of M for each trajectory ' of CCA(R, 1).

The proof is a straightforward application of Proposition 6.10.

6.4. Main Theorems (Continuous Time)

The first publication showing the possibility of reliable computation
with a continuous-time medium (in two dimensions) is ref. 30. Here, we
formulate the new results for variable-period one-dimensional information
storage and computation. The following theorems are just like Theorems 2.5,
5.6 and 5.8 except that they have a variable-period medium Prim�var(Tr$,
1, Tv, 1, =) with Tv=0.5 in place of the perturbed discrete-time automaton
CA=(Tr$). See the Corollary below for continuous-time interacting particle
systems.

Theorem 6.13 (1-dim non-ergodicity, variable-period).
There is a one-dimensional transition function such that its primitive
variable-period perturbations remember a field.

Theorem 6.14 (FCA, 1-dim, storage, variable-period).
There is

v a transition function Tr;

v a hierarchical code 9 with a shared field (F k) as in (4.13);

v constants d1 , c2>0;

117Reliable Cellular Automata with Self-Organization

such that for h2(n)=nc2 �log log n, all =>0, t>0, for Tv=0.5, any configura-
tion * with states in S .F 1, trajectory ' of Prim�var(Tr, 1, Tv, 1, =), over
C=ZN (for finite or infinite N) with initial configuration 1 (*; 9), for all
for all y in Visible(K(N), N), we have

Prob[*(y){'(X(y; 9), t) .F 1]<d1 =+t=h2(N).

The code can be chosen to have X(y; K, 9)= y.

The main result of the present paper is the following one, asserting the
existence of a one-dimensional fault-tolerant variable-period cellular
automaton:

Theorem 6.15 (FCA, 1-dim, variable period, known bounds).
This theorem says the same as Theorem 5.8, with again Prim�var(Tr$, 1,
0.5, 1, =), replacing CA=(Tr$).

For the interpretation of this theorem, see the comment after Theorem 5.8.
The construction indicated in 5.2.1 has a similar variable-period counter-
part. Theorem 6.12 implies the following.

Corollary 6.16 (Interacting particle system construction).
In Theorems 6.13, 6.14, 6.15, we can replace Tr$ with a rate matrix R and
Prim�var(Tr$, 1, Tv, 1, =), with a CCA with rates coming from an arbitrary
=-perturbation of R. This proves, in particular, Theorem 2.6.

6.5. Self-Organization

If the input information is a single symbol then an (infinite or large
finite) hierarchical initial configuration in the above reliable simulation
theorems is less natural than one consisting of the repetition of this symbol.

Theorem 6.17 (FCA, 1-dim, storage, variable-period, self-
organizing). For each m there is

v a transition function Tr with state space S having a field Output;

v a mapping #: [0, 1]m � S;

v constants c1 , c2>0,

such that for h2(n)=nc2 �log log n, =>0, t>0, for any string s of length m in
the standard alphabet, any trajectory ' of Prim�var(Tr, 1, Tv, 1, =) over

118 Ga� cs

C=ZN (for finite or infinite N) having initial configuration '(y, 0)=#(s)
for all y, the following holds for all x:

Prob[s{'(x, t) .Output]�c1<=+t=h2(N)+(t2=) 7 (t&0.4+N &0.4)

Though it is not seen from the theorem, hierarchical organization
actually emerges here: the configuration '(} , t) will consist of islands of
varying levels of ``organization'' and the level will be generally growing
with t. For infinite N we can ignore the terms involving N (since they con-
verge to 0), obtaining =+(t2=) 7 t&0.4. The term t&0.4 decreases rather
slowly. This term is essentially the upper bound on the probability that
organization does not grow to the required level until time t.

To formulate a theorem about self-organizing computation, assume
that the input is again, as in the storage case, just a binary string s fitting
into a single cell. (If you want a larger input, we would have to encode
it into a higher-order cell and repeat that cell.) However, the simulated
computation may last forever producing ever-growing monotonic output.
Where to read the currently available output when the input has no dis-
tinguished origin? This must depend on the length of the output. We can
expect that there is a constant c0 such that for some sequences of lengths
B$1<B$2< } } } , B1<B2< } } } , if the computation output is a string of length
�B$k by some time t, then by all times exceeding a certain time h1(t), its
first segment of length B$k ``can be located somewhere'' in every interval
Ik(x)=[x, x+c0Bk]. Since this requires the short starting segments of the
output to occur more densely than the longer ones, we store the output on
infinitely many different tracks simultaneously. As for the infinitely many
fields F k

i in Proposition 4.10, let Y+Xk(y) denote the position where the
y-th symbol of the k th track is stored, if the storage starts at position Y.
(In our construction, Y will be the site of a cell of the simulated medium
Mk whose body fits into Ik(x).)

The theorem on self-organizing computation says that there is a con-
stant d0 and a function Yk(} , } , }) such that for every k, x, y, t, in every
interval Ik(x), with Y=Yk(x, h1(t), '), with probability �1&d0= we have

`(y, t) .OutputP'(Y+Xk(y), h1(t)) .F 1
1 .

7. SOME SIMULATIONS

7.1. Simulating a Cellular Automaton by a
Variable-Period Medium

The random nature of the switching times of a variable-period medium
is a tame kind of nondeterminism; any deterministic cellular automaton

119Reliable Cellular Automata with Self-Organization

can be simulated by a variable-period medium. To prove this we first intro-
duce an auxiliary concept. Let us define the totally asynchronous cellular
automaton

ACA(Tr)=ACA(Tr, 1, 1)

associated with transition function Tr as follows: ' is a trajectory if for all
x, t we have either '(x, t+1)='(x, t) or the usual

'(x, t+1)=Tr('(x&1, t), '(x, t), '(x+1, t)).

A site x is free in a configuration ! if Tr(!(x&1), !(x), !(x+1)){!(x).
The set of free sites will be denoted by L(!). For a space configuration !
and a set E of sites, let us define the new configuration Tr(!, E) by

Tr(!, E)(x)={Tr(!(x&1), !(x), !(x+1))
!(x)

if x # E,
otherwise.

Now we can express the condition that ' is a trajectory of ACA(Tr) by
saying that for every t there is a set U with

'(} , t+1)=Tr('(} , t), U). (7.1)

Let the update set

U(t, ') (7.2)

be the set of sites x with '(x, t+1){'(x, t). The initial configuration and
the update sets U(t, ') determine '. For any set A, let us use the indicator
function

/(x, A)={1 if x # A,
0 otherwise.

For given ' we define the function {(x, t)={(x, t, ') as follows:

{(x, 0)=0,
(7.3)

{(x, t+1)={(x, t)+/(x, U(t, ')).

We can call {(x, t) the effective age of x in ' at time t: this is the number
of effective updatings that x underwent until time t. Given a transition
function Tr and an initial configuration !, we say that the function has

120 Ga� cs

invariant histories if there is a function `(x, u)=`(x, u, !) such that for all
trajectories '(x, t) of ACA(Tr) with '(} , 0)=! we have

'(x, t)=`(x, {(x, t, '), !). (7.4)

This means that after eliminating repetitions, the sequence `(x, 1), `(x, 2),...
of values that a site x will go through during some trajectory, does not
depend on the update sets, only on the initial configuration (except that the
sequence may be finite if there is only a finite number of successful
updates). The update sets influence only the delays in going through this
sequence. Let

Tr(!, E, F)=Tr(Tr(!, E), F).

We call a transition function Tr commutative if for all configurations ! and
all distinct pairs x, y # L(!) we have Tr(!, [x], [y])=Tr(!, [y], [x]). The
paper(12) proves the theorem that if a transition function is commutative
then it has invariant histories. In Theorem 7.1 below, we will give a simple
example of a universal commutative transition function. For that example,
the theorem can be proved much easier.

Below, we will use the smallest absolute-value remainders

b amod m (7.5)

with respect to a positive integer m>2, defined by the requirement
&m�2<b amod m�m�2.

Theorem 7.1 (Commutative simulation). Let Tr2 be an
arbitrary transition function with state space S2 . Then there is a com-
mutative transition function Tr1 with state space S1=S2_R (for an
appropriate finite set R) with the following property. Each state s # S1 can
be represented as (s .F, s .G) where s .F # S2 , s .G # R. Let !2 be an arbitrary
configuration of S2 and let !1 be a configuration of S1 such that for all x
we have !1(x) .F=!2(x), !1(x) .G=0 } } } 0 # R. Then for the trajectory '1 of
CA(Tr1), with initial configuration !1 , the function '1(x, t) .F is a trajec-
tory of CA(Tr2). Moreover, in '1 , the state of each cell changes in each
step.

In other words, the function Tr1 behaves in its field F just like the
arbitrary transition function Tr2 , but it also supports asynchronous
updating.

Proof. Let U>2 be a positive integer and

Cur, Prev, Age

121Reliable Cellular Automata with Self-Organization

File: 822J H28978 . By:XX . Date:14:02:01 . Time:15:29 LOP8M. V8.B. Page 01:01
Codes: 2512 Signs: 1818 . Length: 44 pic 2 pts, 186 mm

be three fields of the states of S1 , where F=Cur, G=(Prev, Age). The field
Age represents numbers mod U. It will be used to keep track of the time
of the simulated cells mod U, while Prev holds the value of Cur for the
previous value of Age.

Let us define s$=Tr1(s&1, s0 , s1). If there is a j # [&1, 1] such that
(sj .Age&s0 .Age) amod U<0 (i.e., some neighbor lags behind) then s$=s0

i.e., there is no effect. Otherwise, let r0=s0 .Cur, and for j=&1, 1, let rj be
equal to sj .Cur if sj .Age=s0 .Age, and sj .Prev otherwise.

s$.Cur=Tr2(r&1, r0 , r1),

s$.Prev=s0 .Cur,

s$.Age=s0 .Age+1 mod U.

Thus, we use the Cur and Prev fields of the neighbors according to their
meaning and update the three fields according to their meaning. It is easy
to check that this transition function simulates Tr2 in the Cur field if we
start it by putting 0 into all other fields.

Let us check that Tr1 is commutative. If two neighbors x, x+1 are
both allowed to update then neither of them is behind the other modulo U,
hence they both have the same Age field. Suppose that x updates before
x+1. In this case, x will use the Cur field of x+1 for updating and put its
own Cur field into Prev. Next, since now x is ``ahead'' according to Age,
cell x+1 will use the Prev field of x for updating: this was the Cur field of
x before. Therefore the effect of consecutive updating is the same as that of
simultaneous updating. K

The commutative medium of the above proof will be called the march-
ing soldiers scheme since its handling of the Age field reminds one of a
chain of soldiers marching ahead in which two neighbors do not want to
be separated by more than one step. See Fig. 10.

Remark 7.2. In typical cases of asynchronous computation, there
are more efficient ways to build a commutative transition function than to

Fig. 10. The Marching Soldiers scheme.

122 Ga� cs

store the whole previous state in the Prev field. Indeed, the transition func-
tion typically has a bandwidth (see 2.2.1) smaller than &S&.

Corollary 7.3 (Variable-period simulation). For every deter-
ministic transition function Tr2 over some state-space S2 , there is a set of
states S1 , a transition function Tr1 over S1 , and a code that for any values
Tv1�Tv

1 , is a simulation of CA(Tr2) by Prim�var(Tr1 , 1, Tv1 , Tv
1 , 0).

Proof. Let Tr1 be the commutative transition function given by
Theorem 7.1, with the fields F, G. Let !2 be an arbitrary configuration of
S2 and let !1 be a configuration of S1 defined in the statement of the same
theorem. Let '1 be a trajectory of Prim�var(Tr1 , 1, Tv1 , Tv

1 , 0), with the
starting configuration !1 .

An update set U(t, '1) similar to (7.2) can be defined now for the tra-
jectory '1 as follows: x is in U(t, '1) iff t is a switching time of '1 . Similarly,
{(x, t, '1) can be defined as in (7.3):

{(x, 0)=0,

{(x, t)={(x, t&)+/(x, U(t, '1)).

With these, let us define

_(x, s, !)=� [t : {(x, t, '$)=s],

'2(x, s, !)='1(x, _(x, s)) .F.

By the cited theorem, '2 is a trajectory of CA(Tr2). K

The simulation in this theorem is not a local one in the sense defined
in Subsection 3.6 since it changes the time scale. For an analysis of such
simulations, see ref. 5.

7.2. Functions Defined by Programs

Let us recall the definition of a standard computing transition function
as introduced in Subsection 5.2, and let us call a cellular automaton with
such a transition function a standard computing medium. For a standard
computing transition function Tr, integers s and t and string X consider a
trajectory ' of CA(Tr) over the rectangle [0, s]_[0, t] with an initial con-
figuration in which '(0, 0)='(s, 0)=* } } } *, further X is on the input
track on [1, s&1] (padded with V's to fill up [1, s&1]), V's on the output
track and 0's on the other tracks. This defines a trajectory ' since the *'s

123Reliable Cellular Automata with Self-Organization

File: 822J H28980 . By:XX . Date:14:02:01 . Time:15:29 LOP8M. V8.B. Page 01:01
Codes: 1711 Signs: 1080 . Length: 44 pic 2 pts, 186 mm

Fig. 11. Definition of trans(X; s, t).

on the input field in cells 0 and s imply that the cells outside the interval
[0, s] will have no effect.

Assume that at time t, the Output track has no V on [1, s&1]. Then
the output never changes anymore (it is monotonic in standard computing
media). The string w on the Output track on [1, s&1] will be called the
result of the computation, denoted by

w=Tr(X; s, t).

7.2.1. Efficient Universality

We say that the standard computing transition function Tr0 is
efficiently universal if for every standard computing transition function Tr,
there is a string prog and constant c such that for all strings X and positive
integers s, t we have

Tr(X; s, t)=Tr0(prog ? X; cs, c(s+t))

whenever the left-hand side is defined. In other words, Tr0 can simulate the
computation of any other standard computing transition Tr if we prepend
a ``program of Tr.'' The space and time needed for this simulation can only
be a constant factor greater than those of the simulated computation.

Theorem 7.4. There are efficiently universal standard computing
transition functions.

124 Ga� cs

Sketch of the Proof. This theorem can be proven similarly to
Theorem 3.5. The main addition to the construction is that before Tr0

starts a block simulation of Tr the input will be distributed bit-by-bit to the
colonies simulating the cells of Tr. At the end, the output will be collected
from these colonies. K

We fix an efficiently universal standard computing transition function

Univ (7.6)

for the definition of various string functions. In view of Theorem 7.1, we
can (and will) also assume that Univ is commutative. For a string function
f (X) defined over some domain E we will say that prog is a program for
f with time complexity bound t and space complexity bound s over E if we
have

Univ(prog ? X; s, t)= f (X).

It is often convenient to define a finite function (like a transition function
of some medium, or a code) by its program (for Univ) rather than its tran-
sition table, since for many interesting functions, the program can be given
in a more concise form.

7.3. The Rule Language

This subsection defines a language for describing a transition function
that is more convenient than giving a complete transition table. A transi-
tion function will generally be defined by a set of rules which impose some
conditions on it. In case some rules are contradictory and no precedence is
stated between them then rules given later override the ones given earlier.
Rules are sometimes associated with certain fields. The lowest-priority rule
referring to a field is called the default.

Some rules will not be applicable directly, but will rather be used by
other rules: these will be called subrules. A subrule R is just like any other
rule, except that, typically, there is some other rule saying in which time
interval of the work period to invoke R.

Our use of the rule language will not be completely formal but it will
be evident how to make it formal. In a semi-formal description of a rule,
x refers to the cell to which it is applied. This is only a convenient
shorthand that can be replaced with references to fields of the cell and its
neighbors. We will write

�j (x)=x+ jB

125Reliable Cellular Automata with Self-Organization

for the site j steps from x. In the condition as well as the action of the rule,
a field F(x) will simply be written as F. We will often write

F j=' .F(� j (x)).

For example, for field Addr, instead of writing ``if ' .Addr(x)=0 and
Addr(�j (x))=1'' we will write ``if Addr=0 and Addr j=1.''

The simplest possible rule is an assignment of the form F :=g where
F is a field and g is a function of some fields, e.g., F :=G&1+H1. Another
possible rule is the conditional:

cond [
? C1

! A1

} } }
? Ck

! Ak

[?! Ak+1]
].

Here, C1 , C2 ,... are conditions: inequalities and equations in terms of the
states of �j (x), and A1 ,..., Ak+1 are possible actions each of which can be
another rule. We can use logical connectives, even (finite) quantifiers in the
conditions. The above rule says that if condition C1 is satisfied then the
action A1 must be performed. Else if C2 holds then action A2 must be per-
formed, etc. Finally, and optionally, (this is meant by ``[,]'') if all condi-
tions fail then we may require a default action Ak+1 to be performed. The
symbols ?, !, ?! abbreviate condition, action and default respectively. An
alternative way of writing would be

if C1 [
then A1

else if C2

then A2

} } }
else Ak+1

]

Remark 7.5. We prefer the first form (borrowed from the program-
ming language LISP) only in order to put all conditions formally on the
same level.

126 Ga� cs

The rule

R1 & R2

is a combination of two rules. It says that both rules must be carried out
simultaneously. In case the two rules are just two assignments we will
sometimes omit the sign &. The rule

R1 ; R2

asks for carrying out the rules R1 and R2 consecutively. This informal nota-
tion can be understood in terms of a field Age which we are always going
to have and can be replaced with a conditional. E.g., whenever we write

Retrieve;
Eval

then this can be replaced, using appropriate constants ti , with

cond [
? t1�Age<t2

! Retrieve
? t2�Age<t3

! Eval
]

We will also use the construct

for i=a to b (some rule referring to i) .

The construct

repeat k times (} } })

is a special case.
A subrule can have parameters (arguments). Subrule P(i) with

parameter i can be viewed as a different rule for each possible value of i.
An example could be a simple subrule Read�Mail(j) which for j # [&1, 1]
has the form

Mail :=Mail j

127Reliable Cellular Automata with Self-Organization

for the field Mail. We will also have functions: these are defined by the
information available in the arguments of the transition function, and can
always be considered a shorthand notation: e.g., we could denote

f (i)=Addr+Age i.

The construct

let k= } } }

can be understood as notational shorthand (though could also be incor-
porated into the rule language).

Example 7.6. Here is a description of the transition function given
in the proof of Theorem 7.1 (Asynchronous Simulation).

rule March [
for j[&1, 0, 1], [

let r(j)=Cur j if Age j=Age, and Prev j otherwise;]
cond [

? \j # [&1, 1] (Age j&Age) amod U�0
! [

Prev :=Cur;
Cur :=Tr2(r(&1), r(0), r(1)) &
Age :=Age+1 mod U
]]]

We will also have a field Addr. A colony is a segment of cells with
addresses growing from 0 to Q&1 modulo some constant Q. A location is
a pair (F, I) where F is a field, and I is an interval of addresses in the
colony. We will denote it as

F(I).

As an element of the language, of course, a location is simply a triple con-
sisting of the field, and the numbers determining the endpoints of the inter-
val. A location is meant to specify a sequence of symbols on track F. If a
shorthand name is given a location, this will generally begin with an under-
score like

�Info.

128 Ga� cs

Remark 7.7. Occasionally, we may treat the union of two or three
locations as one. It is easy to generalize the rules dealing with locations to
this case.

Let us be given a string S consisting of a constant number of runs of
the same symbol. For example, 0m1n has one run of 0's and a run of 1's.
Let us also be given a location loc. Then a rule Write(S, loc), writing the
string S to the location loc, can be written as a conditional rule:

subrule Write(0m1n, F([a, a+m+n&1])) [
cond [

? a�Addr<Q7 (a+m)
! F :=0
? a+m�Addr<Q 7 (a+m+n)
! F :=1
]]

The rule language can contain some definitions of names for constant
strings of symbols, of the form

Param0=s0 , Param1=s1 , Param2=s2 ,... (7.7)

where si are some strings. The names Param i are allowed to be used in the
rules. Let us even agree that the whole program is nothing but a sequence
of such definitions, where the first string s0 is the sequence of all the rules.
In this case, using the name Param0 in the rules is a kind of self-reference,
but its interpretation is clear since it denotes a definite string.

Theorem 7.8 (Rule language). There is a string Interpr and an
integer (interpr�coe) such that the following holds. If string P is a descrip-
tion of a transition rule Tr over state set S in the above language (along
with the necessary parameters) then the machine Univ defined in (7.6) com-
putes Tr(r&1 , r0 , r1) (possibly padded with V's) from

Interpr ? P ? r&1 ? r0 ? r1

within computation time (interpr�coe)(|P|+1)2 &S& and space (interpr�
coe)(|P|+&S&+1).

Sketch of Proof. A detailed proof would be tedious but routine.
Essentially, each line of a rule program is some comparison involving some

129Reliable Cellular Automata with Self-Organization

fields: substrings of a state argument ri . We have (|P|+1) squared in the
time upper bound since we may have to look up some parameter repeatedly.

K

From now on, by a rule program Trans�prog of the transition function
Tr, we will understand some string to be interpreted by Interpr.

7.4. A Basic Block Simulation

The simulation described here is used just to demonstrate the use of
the notation and to introduce some elements of the later construction in a
simple setting. Let a transition function Tr2 be given. We want to define a
cellular automaton M1=CA(Tr1), whose trajectories simulate the trajec-
tories of M2=CA(Tr2 , Q, U), with appropriate Q, U. Of course, there is a
trivial simulation, when M1=M2 , but a more general scheme will be set
up here. This simulation is not one of the typical simulations by a universal
medium: the cell-size of M1 depends on M2 as in Example 3.1. The con-
struction will be summarized in Theorem 7.13 below.

In the construction, we introduce some more notation that can be
considered a shorthand in writing the rules but can also be incorporated
into the rule language (without invalidating Theorem 7.8 (Rule Language)).

7.4.1. Overall Structure

The transition function Tr2 : S3
2 � S2 to be simulated is given by a

rule program Trans� prog2 . To perform a simulated state transition of M2 ,
a colony of M1 must do the following:

Retrieve: Retrieve the states of the represented neighbor cells from
the neighbor colonies;

Evaluate: Compute the new state using Tr2 ;

Update: Replace the old represented state with the new one.

The field Addr holds a number between 0 and Q&1, as discussed in
Subsection 3.. The default operation is to keep this field unchanged. The
time steps within a work period of a colony are numbered consecutively
from 0 to U&1. The field Age holds a number between 0 and U&1
intended to be equal to this number. The default operation is to increase
this by 1 modulo U. These default operations will not be overridden in the
simple, fault-free simulations. Using these fields, each cell knows its role at
the current stage of computation.

On the track Info, each colony holds a binary string of length &S2&.
For a string S # SQ

1 , the decoded value .*(S) is obtained by taking this

130 Ga� cs

binary string. The encoding will be defined later. The default operation on
the information field is to leave it unchanged. It will be overridden only in
the last, updating step. For simplicity, let us take |Info|=2, i.e., the Info
track contains only symbols from the standard alphabet. The field Cpt will
be used much of the time like the cells of a standard computing medium,
so its size is the capacity |Univ|=&SUniv& of the fixed efficiently universal
standard computing medium. It has subfields Input, Output. The field
Cpt .Input is under the control of the rule Retrieve, while rest of Cpt is
under the control of the rule Eval.

The whole program can be summarized as

Retrieve;
Eval;
Update

7.4.2. Mail Movement

Let x be the base of the current colony under consideration. For
i=&1, 0, 1, we will indicate how to write a subrule

Copy(i, loc1 , loc2)

that copies, from the colony with base x&iQ, the location loc1 to location
loc2 of the current colony.

Remark 7.9. In the present section, for convenience, we assume
that the tracks in loc1 and loc2 have the same width. Similarly, we assume
that the mail track is at least as wide than any of the tracks that it serves
during copying. This assumption might not be valid if the transition func-
tion we are designing is separable with some small bandwidth (as in 2.2.1)
since the mail field must be part of Buf.

Copying can be organized also without the assumption. Suppose e.g.,
that the mail track and loc2 is narrow, and the track of loc1 is wider by a
factor k1 than these. Then loc1 can be considered to be the union of k1

locations of smaller width and the copying of loc1 into loc2 will need k1

separate copying operations.

With the help of this rule, we will have, with appropriate locations
�Retrievedm ,

subrule Retrieve [
for m # [&1, 0, 1] do [

Copy(m, �Info, �Retrievedm)
]]

131Reliable Cellular Automata with Self-Organization

Here �Info is the location on the Info track containing the represented
string. For the rule Copy we use a framework a little more general than
what would be needed here, with a variable-time version in mind. Let

Nb�ind=[&1, 0, 1], (7.8)

Mail�ind=[&1.1, &0.1, 0.1, 1.1]. (7.9)

In colony with base x, track

Mailk , k # Mail�ind

is for passing information to colony with base x+sign(k) w |k|x B, in direc-
tion sign(k). Field Mailk has subfields

Fromaddr, Fromnb, Info, Status.

For simplicity, let |Mailk .Info|= |Info|. The field Status can have the sym-
bolic values

Normal, Undef.

The default value of Mailk .Status is Normal. When Mailk .Status=Undef
then the other subfields of Mailk will play no role therefore we will, infor-
mally, also write Mailk=Undef. For adjacent cells x, y with j= y&x, and
their colonies x* and y* (defined from their Addr field) we define the
predicate

0 if x*= y*

Edgej (x)={1 if x and y are endcells of two adjacent colonies

� otherwise

The mail track Mailk of cell x will cooperate, in direction j, with mail track
peer(k, j) where

peer(k, j)=k& jEdgej (x)

if the latter is in Mail�ind. For j=&sign(k), we define

Mail�to�receive(k)=Mail j
peer(k, j)

as the mail to be received into Mailk provided peer(k, j) # Mail�ind and
Undef otherwise. The one-step rule Move�mail gets mail from the neighbor
cell:

132 Ga� cs

File: 822J H28989 . By:XX . Date:14:02:01 . Time:15:30 LOP8M. V8.B. Page 01:01
Codes: 2295 Signs: 1414 . Length: 44 pic 2 pts, 186 mm

subrule Move�mail [
pfor k in Mail�ind do [

Mailk :=Mail�to�receive(k)
]]

Here, pfor is a ``parallel for'': the rule is carried out simultaneously for all
k (i.e., for all fields indexed by k). A cell will typically copy the information
to be sent into Mailk .Info and at the same time, its own address into
Mailk .Fromaddr, and &sign(k) w |k|x into Mailk .Fromnb. In the copy rule
here, i # [&1, 0, 1] refers to the direction of the sending colony as seen
from the receiving colony. The next argument is the location of origin in
the sending colony, the one following is the location to receive the informa-
tion in the receiving colony.

subrule Copy(i, F1([a1 , a1+n&1]), F2([a2 , a2+n&1])) [
let k=1.1i if i{0 and 0.1sign(a2&a1) otherwise
let l=0.1sign(k)
Mailk .Fromaddr :=Addr
& Mailk .Fromnb :=&i
& Mailk .Info :=F1 ;
repeat 2Q times [

Move�mail
& cond [

? Addr # [a2 , a2+n&1] and
Addr&a2=Maill .Fromaddr&a1 and &i=Maill .Fromnb

! F2 :=Maill .Info
]]]

Remark 7.10 (Indirectly given locations). The description
F1([a1 , a2]) of a location can fit into a single field F0 of some cell. We will
allow that some argument locj of the rule Copy(i, loc1 , loc2) is given by a
field F0 this way. This will be done only if i=0, i.e., the copying proceeds
within one colony. When executing the copy rule, it will be assumed that
field F0 of each cell of the colony contains the same information locj .

Fig. 12. Copy(&1, F1([a1 , a1+n&1]), F2([a2 , a2+n&1])).

133Reliable Cellular Automata with Self-Organization

Therefore the rule can be written just as above, except that some of its
parameters are read now from F0 .

7.4.3. The Evaluation Rule

The subrule Eval controls the track Cpt"Cpt .Input. The first steps of
Eval write the interpreter, and the program of the transition function to be
simulated into appropriate locations on the Cpt .Input track, followed by
writing the program Trans� prog2 found as Param1 after the present rules
(see 7.7):

Write(Interpr, �Interpr);
(1) Write(Param1 , �Prog)

(If Tr1=Tr2 (self-simulation) is desired then write Write(Param0 , �Prog)
in part (1) above, and Param1 , after it.) Then Param2 ,... must be written
after Param1 . Next, the rule Eval executes

Copy(0, �Retrievedm , �Argm)

for m # Nb�ind where �Argm are locations for the arguments of the transi-
tion function on the Cpt .Input track. For initialization, the rule writes
V } } } V to the Output track and the rest of the cells (including the endcells)
of the Cpt .Input track, and 0's to the track Cpt"(Cpt .Input _ Cpt .Output).
Then for a sufficient number of steps, the transition function Univ will be
applied to the Cpt track. According to Theorem 7.8 (Rule Language), the
computation finishes in

(interpr�coe)(|Trans� prog2 |+1)2 &S2 &

steps, so this number of iterations is sufficient.

Remark 7.11. If the transition function to be simulated is separable
as defined in 2.2.1 then what has been computed is not Tr2 but the auxiliary
function Tr (w)

2 . In this, the meaning of field [3w, 4w&1] is an address, of
a target field to be changed in the simulated cell. The evaluation rule will
broadcast this number into the field Target�addr of each cell of the colony
(it fits into a single field) to be used eventually in Update.

The subrule

Update

copies the track Cpt .Output into track Info.

134 Ga� cs

Remark 7.12. When the transition rule Tr2 to be simulated is
separable (as in 2.2.1) then the appropriate locations of Cpt .Output must
be copied to the appropriate locations of Info. Some of this copying uses
locations defined in an indirect way as in Remark 7.10, using the field
Target�addr mentioned in Remark 7.11.

7.4.4. Summary in a Theorem

The encoding .
*

of a cell state v of M2 into a colony of M1 is defined
as follows. The string v is written into �Info. The Cpt track and the mail
tracks are set to all 1's. Each Age field is set to 0. For all i, the Addr field
of cell i of the colony is set to i.

The theorem below states the existence of the above simulation. As a
condition of this theorem, the parameters

Trans� prog2 , &S1 &, &S2 &, Q, U (7.10)

will be restricted by the following inequalities.

Cell Capacity Lower Bound:

&S1&�c1 Wlog U X+|Univ|+c2

where c1 , c2 can be easily computed from the following consideration.
What we really need is &S1&�|Addr|+|Age|+|Info|+|Mail |+|Cpt|
where the following choices can be made:

|Info|=2,

|Maili |=|Maili .Fromaddr|+|Maili .Fromnb|+ |Maili .Info|,

=Wlog QX+2+2,

|Cpt|=|Univ|,

|Addr|=|Age|=Wlog U X.

Colony Size Lower Bound:

Q�(interpr�coe)(&S2 &+|Trans� prog2 |+log U+1).

With the field sizes as agreed above, this provides sufficient space in the
colony for information storage and computation.

Work Period Lower Bound:

U�3Q+(interpr�coe)(|Trans� prog2 |+1)2 &S2&.

135Reliable Cellular Automata with Self-Organization

With the field sizes above, this allows sufficient time for the above program
to be carried out.

It is not difficult to find parameters satisfying the above inequalities
since log Q<<Q.

Theorem 7.13 (Basic Block Simulation). There are strings
Sim� prog0 , Sim� prog1 such that the following holds. If Trans� prog2 ,
&S1&, &S2 &, Q, U satisfy the above inequalities then

Param0=Sim� prog1 , Param1=Trans� prog2 ,

Param2=&S1 &, Param3=&S2&,

Param4=Q, Param5=U

is a rule program of a transition function Tr1 such that CA(Tr1) has a
block simulation of CA(Tr2 , Q, U). Also, if &S1 &, &S2&, Q, U satisfy the
above inequalities with S1=S2 and Trans� prog2=Sim� prog0 then

Param0=Sim� prog0 , Param1=empty string,

Param2=&S1 &, Param3=&S1&,

Param4=Q, Param5=U

is a rule program of a transition function Tr1 such that CA(Tr1) has a
block simulation of CA(Tr1 , Q, U).

The given construction is essentially the proof. Its complete formaliza-
tion would yield Sim� prog0 and Sim� prog1 explicitly.

8. ROBUST MEDIA

This section defines a special type of one-dimensional medium called
robust. From now on, when we talk about a medium with no qualification
we will always mean a robust medium. For help in understanding the
definition can be compared to the primitive variable-period media in Sub-
section 6.3. The media defined in the present section have some features
distinguishing them from cellular automata: non-lattice cells, damage, com-
munication among non-nearest neighbors. The need for non-lattice cells
was explained in Subsection 4.3.

136 Ga� cs

8.1. Damage

Robust media have a special set of states Bad/S. For a space-time
configuration ' we define the damage set

Damage(')=[(x, t) : '(x, t) # Bad].

For a space configuration, the damage is defined similarly. The interpretation
of the set Damage(') is that when (x, t) # Damage(') then in the neighbor-
hood of (x, t), we will not be able to make any predictions of ', i.e., in
some sense, ' behaves completely ``lawlessly'' there. When '(x, t) # Bad
then it is irrelevant whether we regard site x occupied by a cell or not. For
a cell x a time interval I is damage-free if '(x, }) is not in Bad during I.

Remark 8.1. In all cellular media concerned with our results we
could require Damage(')=<. The damage concept is necessary only in a
trajectory '2 of a medium M2 obtained by simulation from a trajectory '1

of some medium M1 . Such a simulation typically requires some structure
in '1 . When noise breaks down this structure the predictability of '2 suffers
and this will be signalled by the occurrence of damage in '2 . However, for
convenience, we will define damage even in the media used on the lowest
level, as a violation of a certain transition rule.

According to the general definition of a medium, the set of trajectories
will be defined by a pair b(}), g(} , } , }) where b(:) give the probability
bound belonging to type : and g(:, W, ') is the event whose probability is
bounded. We formulate these in terms of ``properties.'' For a medium with
cellsize B, let

V=[&B�4, B�4&]_[&Tv�4+, 0]. (8.1)

The Computation Property constrains the kinds of events that can occur
under the condition that the damage does not intersect certain larger rec-
tangles. One condition type :(restor) will be called the Restoration Property:
it bounds the probability of occurrence of damage in the middle of some
window (x, t)+2V. The Restoration Property, which depends on a new
parameter =, says that the probability of the damage is small: even if other
damage occurs at the beginning of a window it will be eliminated with high
probability (see Fig. 13).

Condition 8.2 (Restoration Property). Let b(:(restor))==.
Further, for any rational pair (x, t) let

g(:(restor), (x, t)+2V, ')

be the event function for the event that there is damage in '((x, t)+V).

137Reliable Cellular Automata with Self-Organization

File: 822J H28994 . By:XX . Date:28:02:01 . Time:11:10 LOP8M. V8.B. Page 01:01
Codes: 2322 Signs: 1781 . Length: 44 pic 2 pts, 186 mm

Fig. 13. The Restoration Property.

The Restoration Property says that damage, i.e., the occasional
obstacle to applying the Computation Property, disappears soon after its
occurrence: namely, it has very small conditional probability of occurrence
in the inner half of any rectangle (x, t)+2V. The property will automati-
cally hold on the lowest level by the property of the medium that the
transition rule is only violated with small probability.

Remark 8.3. In the model of ref. 11, the restoration property is
weaker. There, damage does not necessarily disappear in a short time but
if it is contained in a certain kind of triangle at the beginning of the
window then, with high probability, it is contained in a smaller triangle of
the same kind later in the window.

Damage helps us present a hierarchical construction as a sequence of
simulations. When a large burst of faults destroys the fabric of these nested
simulations, then 'k+1 cannot be explained just in terms of the 'k from
which it is decoded. The damage set will cover those lower-level details of
the mess that we are not supposed to see as well as the mechanism of its
removal. Damage points can be viewed as holes in the fabric of the lawful
parts of a trajectory (see Fig. 14).

Consider a simulation '*=8*(') between two robust media. Let us
define the damage set of '* to be used in almost all such simulations. As
usual, let us mark by * the corresponding quantities in the simulated
medium when some simulation is fixed. We will define '*(x, t) # Bad iff
Damage(') contains at least two points u, v such that u+2V, v+2V are
disjoint and even u+3V, v+3V are contained in (x, t)+4V*+(B*�2, 0).

The value of '*(x, t) provided it is not in Bad, will be essentially
defined by a block code . as

.*('(x+[0, QB&1], t)).

138 Ga� cs

File: 822J H28995 . By:XX . Date:14:02:01 . Time:15:31 LOP8M. V8.B. Page 01:01
Codes: 2285 Signs: 1544 . Length: 44 pic 2 pts, 186 mm

Fig. 14. Cause for damage in point (x, t) of the simulated trajectory.

However, there will be some look-back in time for stabilization, i.e., the
simulation will not be memoryless. The goal of the damage definition is to
relieve us of the need of simulating a transition function if there is too
much damage in the big rectangle (x, t)+4V*+(B*�2, 0).

Lemma 8.4 (Simulation Damage Probability Bound). Let
M, M* be media with parameters =, =* whose local condition system is
defined by the Restoration Property. Let a simulation 8* be defined
between them which assigns damage in M* according to the above damage
map. If

=*�25((B*�B)(Tv*�Tv) =)2

then, 8* is a deterministic canonical simulation map as defined in 6.2.1.

This lemma says that small bursts of damage that are not too close to
each other behave in the medium M as if they were independent, therefore
the probability of the occurrence of two such bursts can be estimated by =2

times the number of such pairs in a rectangle V*.

Proof. It is enough to show an expression of the form (6.12) for local
conditions of type restor in M*. Let x1 , t1 be the sizes of the space and
time projections of V. We define the following lattice of points:

V=[(ix1 , jt1) : i, j # Z].

Then the rectangles v+V for v # V form a partition of the space-time. For
each u in space-time, let v(u) be the v # V with u # v+V. Let ' be a trajec-
tory of M. It is enough to consider the rectangle 2V*. If Damage('*) inter-
sects V* then there are some points u1 , u2 in Damage(') such that ui+2V

139Reliable Cellular Automata with Self-Organization

are disjoint and even ui+3V are in 5V*+(B*�2, 0). Then it is easy to see
that even v(ui)+2V are disjoint from each other and are contained in
5V*+(B*�2, 0). Let n be the number of pairs v1 , v2 in V with this
property. We found n pairs of rectangles ui, j+2V (i=1,..., n, j=1, 2) such
that ui, 1+2V & ui, 2+2V=<, and that if Damage('*) intersects V* then
there is an i such that Damage(') intersects ui, j+V for j=1, 2. We found

g*(restor, 2V*, '*)�:
i

`
j

g(restor, u i, j+2V, ').

To complete the proof, observe that

:
i

`
j

b(restor)�n=2.

Since counting shows n<25((B*�B)(Tv*�Tv))2 and the assumption of the
lemma says 25((B*�B)(Tv*�Tv))2 =2<=* both conditions of a deterministic
canonical simulation are satisfied. K

8.2. Computation

8.2.1. Neighborhood Structure

Before giving the Computation Property, let us introduce some details
of the structure of a robust medium. Cells sometimes have to be erased
(killed) in a trajectory since cells created by the damage may not be aligned
with the original ones. At other times, the creation of a live cell at a vacant
site will be required. Most of the trajectory requirements of a robust
medium will be expressed by a transition function Tr, desribed later. Kill-
ing and creation may be indicated by some special values of this function.

Although we permit non-lattice configurations we could still use a
transition function that restricts the new state of a cell only as a function
of adjacent cells. It is, however, convenient to allow nearby cells to see each
other regardless of whether they are on the same lattice or not. We extend
the notation � j (x) introduced in Subsection 7.3. Let us fix '. For a vacant
site x at time t there is at most one cell at distance greater than 0 but less
than B to the right of x: if it exists and there is no damage between it and
x then we denote it by �0.5(x, t, '). Otherwise, �0.5(x, t, ') is undefined. The
notation �&0.5 is defined analogously. We will omit ', and sometimes even t,
from the arguments when it is obvious from the context. By convention,
whenever �j (x, t, ') is undefined then let

'(�j (x, t, '), t)=Vac.

140 Ga� cs

For a (nonvacant) cell x there is at most one cell at distance greater than
B but smaller than 2B to the right of x: if it exists and there is no damage
between it and x then we denote it by

�1.5(x).

Otherwise, this value is undefined. The corresponding cell to the left is
denoted by �&1.5(x). The medium depends on a parameter r called the
reach, determining the maxiumum distance of the neighbors that a cell is
allowed to depend on directly. (We will only use two possible reaches: r=1
and r=3.) Let

Nb�indr=[&1.5, 1.5] _ [&r, &r+1,..., r&1, r]. (8.2)

A function u: Nb�indr � S will be called an assignment. For an assignment
u, we will write uj for the value of u on j. The transition function in a robust
medium has the form Tr(u) where u runs over assignments. In analogy with
(2.3), let

Tr(', x, t)=Tr(u)

where u is the assignment defined by uj='(�j , t) with � j=�j (x, t, ') except
that if �j is defined for some noninteger j, then then u*j=Vac for all *>1.
Thus, when a closest neighbor �j is not adjacent then the transition func-
tion does not depend on any farther neighbors in that direction. ' will be
omitted from Tr(', x, t) when it is obvious from the context.

8.2.2. Properties of the Transition Function

A robust medium will be denoted by

Rob(Tr(w), B, Tv, Tv, =, =$, r).

The set S of states is implicit in the transition function. Similarly, the sub-
set Bad of states will be defined implicity by the transition function: this
will be the states such that if any argument of the transition function is in
this set, the function value is not defined. The first bit of the state of a cell
will be called Rand and we write Det=All"Rand. There is also a subfield
Color/Det defined implicitly by the transition function: this is, say, the set
of those first bits of Det that turn to 0 when Tr is applied to the vector with
all Vac values. (Color plays role in self-organization.)

The transition function, a mapping from assignments to S, describes
the goal for the deterministic part s .Det of the value s of the state after
transition. We will see that the field Color will not necessarily obey the

141Reliable Cellular Automata with Self-Organization

transition function. We will assume that Tr is separable in the sense of 2.2.1
with some bandwidth w. Let the fields Rand and Color be part of Inbuf:
thus, they can be seen by a neighbor cell in a single step. The separability
requirement also defines a predicate legal Tr(u, v).

Our transition functions in robust media will also have the following
properties:

Condition 8.5 (Time Marking). If s{Vac then legal(s, s)=0.

This condition is similar to (6.17) and says that a nonvacant cell
always tries to change its state. It is necessary for nontrivial media with a
strict dwell period upper bound.

Let us call a pair (j, v) # [&1, 1]_S, a potential creator of state
s{Vac if s=Tr(u) provided ui=v for i= j and ui=Vac otherwise. In a
space-time configuration ', at a switching time _ of cell x when '(x, t)
turns from vacant to non-vacant, we call y=�j (x, _&) a creator of x for
time _ if (j, '(�j (x, _&))) is a potential creator of '(x, _) and further
'(x, t)=Vac, '(y, t)='(y, _&) for t # [_&Tv�2+, _&].

Condition 8.6 (Creation). Let u be an assignment such that
u0=Vac, Tr(u) .Det{Vac .Det and in which there is a j in [&1, 1] with
uj{Vac. Then there is a j # [&1, 1] such (j, uj) is a potential creator of
Tr(u).

This condition says that if, for some t1<t2 , a vacant cell x comes to
life at time t2 due to ``observation'' at some time t1 when there is a neighbor
�j (x, t1) nearby then an adjacent neighbor at time t1 can be made com-
pletely responsible for the state of the new cell at time t2 : the state would
be the same even if all other sites in the neighborhood were vacant.

If u is the neighborhood state assignment vector consisting of all
vacant states then let Newborn=Tr(u) be the canonical newborn state.
A state s is a newborn state if

s . (Det"Color)=Newborn . (Det"Color).

Note that a newborn state is allowed to be somewhat less determined than
others: this property will be used in self-organization.

Condition 8.7 (Cling to Life). If Tr(', x, t)=Vac then
'(�j (x, t), t){Vac for some j # [&1.5, 1.5].

Thus a cell will only be erased if it may disturb a close non-aligned
neighbor.

142 Ga� cs

File: 822J H28999 . By:XX . Date:14:02:01 . Time:15:31 LOP8M. V8.B. Page 01:01
Codes: 2070 Signs: 1128 . Length: 44 pic 2 pts, 186 mm

Fig. 15. To the computation property.

8.2.3. The Computation Property

The condition called the Computation Property has a form similar to
the definition of primitive variable-period media in Subsection 6.3. For a
space-time configuration ', cell x and rational number a>0 let

_1 , _2 , _0

be defined as follows. _1 , _2 are the first two switching times of x after a
but defined only if '(x, _1){Vac. On the other hand, _0 is the first switch-
ing time of x after a+Tv but defined only if '(x, a+Tv)=Vac. Whenever
we have an event function g(:, W, ') in whose definition _2 occurs, this
function is always understood to have value 0 if _2 is not defined (similarly
with _0). Let

W0(x, a)=[x]_[a&Tv�2+, a+2Tv],

W1(x, a)=[x&(r+1) B, x+(r+2) B&]_[a&Tv�2+, a+2Tv],

fj (x, a, ')=the event function for [Damage(') & Wj (x, a)=<]

(j=0, 1).

Condition 8.8 (Computation Property). This property con-
sists of several condition types. For each type : used in this property except
:(rand, j), we have b(:)=0, i.e., the corresponding events g(:(), W, ') are
simply prohibited in the trajectory. On the other hand,

b(:(rand, j))=0.5+=$ (j=0, 1).

143Reliable Cellular Automata with Self-Organization

(a) This condition requires coin-tossing, for j=0, 1:

g(:(rand, j), W0(x, a), ')= f0(x, a, ')['(x, _2) .Rand= j]

(b) This prohibits dwell periods shorter than Tv or longer than Tv.
Let

g(dw� p�bd, W0(x, a), ')= f0(x, a, ') h(dw� p�bd, x, a, ')

where h(dw� p�bd, x, a)=1 if ' has a dwell period shorter than Tv in
W0(x, a) or has a dwell period longer than Tv there (and, as always,
0 otherwise).

(c) This says that whenever W0(x, a) is damage-free the transition at
_2 is a legal one. Let

g(legal�comp, W0(x, a), ')= f0(x, a, ')(1&legal('(x, _2&), '(x, _2))).

(d) This says that whenever W0(x, a) is damage-free the transition in
_0 is a legal one. Let

g(legal�birth, W0(x, a), ')= f0(x, a, ')(1&legal('(x, _0&), '(x, _0))).

(e) This says that whenever W1(x, a) is damage-free the transition
function applies, at least as much as it can, based on observation at a
certain time during the observation period (``atomicity''). Let

g(trans, W1(x, a), ')= f1(x, a, ') h(trans, x, a, ')

where h(trans, x, a, ')=1 unless there is a t$ # [_1+, _2&Tv�2] with

'(x, _2) .Det=Tr(', x, t$) .Det.

(f) This says that if x always has a neighbor during the whole inter-
val of interest before its birth then it has a creator. Let

g(creator, W1(x, a), ')= f1(x, a, ') h(creator, x, a, ')

where h(creator, x, a, ')=1 unless either x has a creator for time _0 or
there is a t$ # [a+, _0] such that '(�j (x, t$), t$)=Vac for all j # [&1, 1].

(g) This says that if x does not have a creator accounting for its birth
then it is a newborn with vacant neighbors at some time shortly before
birth. Let

g(newborn, W1(x, a), ')= f1(x, a, ') h(newborn, x, a, ')

144 Ga� cs

where h(newborn, x, a, ')=1 if x has no creator for time _0 , and either
'(x, _0) is not a newborn state or there is no t in [_0&Tv�2, _0&] with
'(�j (x, t), t)=Vac for all j # Nb�ind.

(h) This says that x cannot stay vacant if it has would-be creators for
a long time and has no neighbor blocking creation. Let

g(no�birth, W1(x, a), ')= f1(x, a, ') h(no�birth, x, a, ')

where h(no�birth, x, a, ')=1 if

(a) '(x, t)=Vac for all t # [a+, a+2Tv];

(b) for each t # [a+, a+2Tv] there is a j # [&1, 1] such that
(j, �j (x, t)) is a potential creator of some (non-vacant) state;

(c) there is no (y, t) with 0<| y&x|<B, t # [a+, a+2Tv],
'(y, t){Vac.

Example 8.9 (Special cases). To obtain a constant-period
medium as a special case of robust media set Tv=Tv, r=1. To obtain a
deterministic cellular automaton, set also ==0, require that the space-time
configurations have empty damage and that the transition function does
not give a vacant value.

The connection between primitive variable-period media and robust
media will be set up using a trivial simulation. Let M1=Prim�var(Tr, B,
Tv, Tv, =). We define a simple simulation 8* by this medium of the robust
medium

M2=Rob(Tr, B, Tv, Tv, =, =, 1).

M2 has almost the same state set as M1 except that it also has at least one
extra state, making the set Bad nonempty. We give the definition of
s='*(x, t)=8*(')(x, t) for each '. If x is not an integer multiple of B
then s=Vac. Else s='(x, t) unless ' violates the Computation Property of
M2 at x with _2=t: in that case, it is in Bad. It can be verified that this
is indeed a simulation.

8.2.4. Error-Correction

The error-correction property can be defined here just as in 3.6.2,
replacing Ti with Tvi . Then a lemma analogous to Lemma 3.7 can be for-
mulated, and a proof for Theorem 6.13 can be provided that is analogous
to the proof of Theorem 2.5.

145Reliable Cellular Automata with Self-Organization

8.3. Simulating a Medium with a Larger Reach

Theorem 8.10 (Reach Extension). For all r and all Tr2 with
reach r, for all Tv�Tv let *=WTv�TvX,

U=64*((*+1) r+1)(r+2).

There is a set S1 , a one-to-one mapping s [s
*

from S2 to S1 giving rise
to the code .

*
(!)(x)=(!(x))

*
, functions Tr1() of reach 1, and for all

B, =, =$, a decoding 8* such that (8*, .
*

) is a simulation of

M2=Rob(Tr2 , B, UTv, UTv, U=, UR=$, r)

by

M1=Rob(Tr1 , B, Tv, Tv, =, =$, 1).

The basic idea is of the proof is to replicate the state of a whole reach-
r neighborhood of a cell of M2 in a single cell of M1 . It will take then a
work period size U that is at least proportional to r for a cell of M1 to
simulate a step of a cell of M2 since the cell must learn about neighbors r
steps away. In fact, due to asynchrony, the work period will be significantly
larger. Some complication is due to the need to achieve the ``atomicity''
property, namely that a single observation time can be assigned to a transi-
tion of M1 even though the observation occurs over an extended period of
time. The solution for this is to make sure that the observed values coming
from the neighbor cells do not come from near the end of the work period
of those cells.

9. AMPLIFIERS

In the present section, when we talk about media without qualification
we understand robust media.

9.1. Amplifier Frames

The eventual goal is to find an amplifier (Mk , 8k) with a fast decreas-
ing sequence =k and we also want Mk to simulate a computation with
transition function Univ and damage probability bound =k . In this subsec-
tion, we impose some conditions on the parameters of a sequence (Mk) of
media that are sufficient for the existence of an amplifier. These conditions
are similar to the inequalities in the conditions of Theorem 7.13.

146 Ga� cs

9.1.1. The Rider Fields

All robust media Mk have, by definition, the fields Det and Rand
whose behavior is governed by the computation and restoration properties.
Only Det will be subdivided into subfields: therefore subfields ' .Det .F will
be denoted simply as ' .F, without danger of confusion.

In the media Mk we discuss further, there will be a shared field called
Riderk with guard field Guard k (see Subsection 4.2). The useful computa-
tion of Mk will be carried out on the ``active level'' k, on the track Riderk.
The simulations will have sufficient freedom in the rule governing Riderk on
the active level to regain the universality lost by having no ``program'' for
the whole simulation (as discussed in Subsection 4.3). We will say that in
a robust medium M, the transition function Tr, with state set S, is com-
bined from the rider transition function Rd�trans and simulation transition
function Sim�trans with fields Rider and Guard, if the value s=Tr(r) is
defined in the following way. If Sim�trans(r)=Vac then s=Vac. Otherwise,
all fields of s disjoint from s . (Rider _ Guard) are defined by Sim�trans(r).
Further

s .Rider={Rd�trans(r) .Rider
Sim�trans(r) .Rider

if r0 .Guard=0,
otherwise,

(9.1)

s .Guard={Rd�trans(r) .Guard
Sim�trans(r) .Guard

if r0 .Guard�0,
otherwise.

Thus, the rider field is controlled by its own transition function only when
the simulation does not command to eliminate the cell, and when we are
on the active level according to the guard field. The guard field will be con-
trolled by its own transition function in case we are not below the active
level (where the simulation transition function will enforce the broadcast
property for it).

9.1.2. Broadcast Amplifier Frames

The string prog will be called a uniform program (with complexity coef-
ficient k1) for the functions fk if there is some constant k1 such that it com-
putes on the universal computing medium Univ the value fk(r) from k, r
with space- and time-complexities bounded by k1(log k+|r|) where |r| is
the total number of bits in the arguments r. If a sequence (fk) of functions
has a uniform program it is called uniform. As a special case, a sequence
of constants ck is uniform if it is computable with space- and time com-
plexities k1 log k from the index k.

Here, and always from hence, when we refer to a natural number k as
a binary string we always mean its standard binary representation. We will

147Reliable Cellular Automata with Self-Organization

distinguish the simpler notion of a ``broadcast amplifier frame'' from the
full-featured ``amplifier frame.'' The simpler notion is sufficient for the basic
non-ergodicity result. A broadcast amplifier frame Frame is given by
sequences

Capk , Qk , Uk

and the constant R0 satisfying certain conditions. Here, Qk is the number
of cells in a colony. For an appropriate sequence &k�1, the number of
dwell periods in a work period will be allowed to vary between Uk �&k and
Uk &k . Given a frame Frame, let us define some additional parameters as
follows, with some arbitrary positive initial constants Tv

1�Tv1 and ===1 ,
=$1<1�R2

0 .

Sk=[0, 1]Capk,

Bk= `
i<k

Qi ,

&k=1+R0Qk�Uk if Tv1{Tv
1 , and 1 otherwise,

Tvk=Tv1 `
k&1

i=1

Ui �& i ,

(9.2)

Tv
k=Tv

1 `
k&1

i=1

Ui&i ,

=k+1=25(Qk Uk&k =k)2,

="k=4QkUk&k=k ,

=$k==$1+ :
k&1

i=1

=i" .

The formula for =k+1 is natural in view of Lemma 8.4. The definition of
=$k+1 takes into account the limited ability to simulate a coin-toss with the
help of other coin-tosses. ="k is used for the error-correction property: it is
essentially the probability that there is any k-level damage at all during the
work period of a colony of k-cells. The requirements below defining an
amplifier frame can be compared to the corresponding conditions for
Theorem 7.13.

An object Frame given by the above ingredients is a broadcast
amplifier frame if the conditions listed below hold.

148 Ga� cs

Complexity Upper Bounds: All parameters in Frame are uniform
sequences with complexity coefficient R0 .

Bandwidth Lower Bound: We should be able to deal with numbers
comparable to the size of the colony and the work period within a cell:

Capk�R0 log Uk . (9.3)

Capacity Lower Bound: The colony must represent the state of the big
cell with redundancy:

R0Capk+1�QkCapk . (9.4)

Work Period Lower Bound: There must be enough dwell periods in a
work period to perform the necessary computations of a simulation, with
some repetitions:

Uk�R0(log Qk+log k) Qk . (9.5)

The factor log Qk+log k is needed only for technical reasons, in the proof
of self-organization.

Error Upper Bound. The following upper bound on QkUk implies, in
view of the definition of the error probabilities, that these decrease
exponentially:

=0.2
k �R0 �Qk Uk . (9.6)

Time Stability:

Tv
k

Tvk
�3. (9.7)

This inequality (which is made this strong for simplicity) can be achieved
e.g., with Uk�ck2Qk for some sufficiently large c.

The definition of =k+1 and (9.7), implies

=k+1=25(Qk Tv
k+1 �Tv

k)2 =2
k�25(2QkUk)2 =2

k�32=1.6
k �(R0)2�=1.5

k

hence

=k�=1.5k&1
. (9.8)

From here, it is easy to see that ="k also converges to 0 with similar speed.

149Reliable Cellular Automata with Self-Organization

Example 9.1. Let us choose for some c�1

Tv1=1,

Tv
1=2,

Qk=c2k2, (9.9)

Uk=c3k4,

Capk=c(log k 6 1).

Conditions (9.3) and (9.5) are satisfied for large c.
There is a slightly better bound on =k here than in (9.8):

=k+1�25(2Qk Uk)2 =2
k=32c10k12=2

k . (9.10)

Let us prove, by induction, for small enough =,

=k�=2k&2+(k+1)�4. (9.11)

For k=1, the statement gives =�=. For k>1, using (9.10) and the induc-
tive assumption,

=k+1�=2k&1+(k+1)�232c10k12==2k&1+(k+2)�4(32=k�4c10k12)

For small enough =, the last factor is always less than 1.

9.1.3. Amplifier Frames

The above definitions must be modified for the notion of an amplifier
frame, (not needed for the basic non-ergodicity result). An amplifier frame
Frame is given by the same sequences as a broadcast amplifier frame, and
some additional sequences

qk , wk , Rd�transk(), Outputk, R1(k).

Here, Rd�transk() describes a rider transition function with bandwidth�
wk , the field Riderk has subfield Outputk on which this function has
monotonic output, and the number R1(k) is a redundancy coefficient. Each
cell will have space

B$k= `
i<k

qi

for the represented information. An object Frame given by the above
ingredients is an amplifier frame if the conditions listed below hold.

150 Ga� cs

Complexity Upper Bounds: The sequence Rd�trans (wk)
k () of functions

(see (2.5)) and all other parameters in Frame are uniform sequences with
complexity coefficient R0 .

Bandwidth Lower Bound: We should be able to deal with numbers
comparable to the size of the colony and the work period within the time
and space bound wk :

wk�log Uk . (9.12)

Redundancy Lower Bound: The redundancy must help duplicate the
content of at least a certain constant number of cells:

R1(k)�R0 �Qk . (9.13)

Capacity Lower Bounds: The capacity Capk of a cell should
accomodate all the original information 2B$k (2 bits per primitive cell).

2B$k�Capk . (9.14)

The colony must represent the state of the big cell with redundancy. It also
needs extra space for computing with a few bandwidths of information of
the big cell.

(1+R1(k)) Capk+1+R0wk+1�QkCapk . (9.15)

Work Period Lower Bound: There must be enough dwell periods in a
work period to perform the necessary computations of a simulation:

Uk�R0 Qk \Capk

wk
+log Qk+log k+ . (9.16)

It costs QCapk �wk to perform Q steps of simulated computation of Univ
when each track of size wk must be worked separately. The other terms in
the parentheses are typically of lower order and are needed only for techni-
cal reasons, in the proof of self-organization.

Error Upper Bound, Time Stability: These conditions are the same as
the ones for broadcast amplifier frames.

The inequality (9.15) has the following consequences, similar to (4.32):

Lemma 9.2.

:
k

R1(k)
Capk+1

Bk+1

<�, :
k

wk+1

Bk+1

<�.

151Reliable Cellular Automata with Self-Organization

Thus, as expected, if we have constant space redundancy, i.e.,
Capk+1 �Bk+1 is bounded away from 0 then �k R1(k)<�, i.e., the redun-
dancies of each level form a converging series. This will then impose, via
(9.16), a lower bound on the time redundancy achievable by these amplifiers.

Proof. Inequality (9.15) can be rearranged as

R1(k)
Capk+1

Bk+1

+R0

wk+1

Bk+1

�
Capk

Bk
&

Capk+1

Bk+1

K (9.17)

Let us remind the reader that the constructions involving the Rider
and Guard fields are not needed for the simple non-ergodicity results.

Example 9.3. Let us choose for some c�1

Tv1=1,

Tv
1=2,

Qk=c2k2,

qk=Qk ,
(9.18)

R1(k)=c�Qk=1�(ck2),

Uk=c3k4=cQk �R1(k),

wk=R1(k) Bk ,

Capk=2Bk(1+1�k).

The transition function Rd�transk will be the aggregated function Trwk
Univ as

defined in Example 3.4. This satisfies the required complexity bounds.
Conditions (9.12) and (9.13) are satisfied with large c. Condition (9.14) is
satisfied by the definition of Capk . It is easy to check that (9.15) also holds
with large c. Condition (9.16) will be satisfied with large c. The error upper
bound is satisfied just as for the broadcast amplifier example, and we have
(9.11) again.

The parameters of this example are chosen for constant space
redundancy, at the price of time redundancy that comes as an extra factor
of Capk �wk at every level.

For later reference, here is an explicit expression falling between Tvk

and Tv
k :

`
i<k

U i=c3(k&1)((k&1)!)4=e4k log k+O(k). (9.19)

The expression for Bk is similar.

152 Ga� cs

9.2. The Existence of Amplifiers

We give a separate, simpler track of definitions for broadcast ampli-
fiers. A (uniform) broadcast amplifier is given by a broadcast amplifier
frame Frame, uniform sequences (Sim�transk), (Mk , 8k)k�1 with 8k=
(8*k , .k*

) as defined in Subsection 3.6 and a uniform sequence of codes
.k**

with a sequence of fields (F k) such that

(a)

Mk=Rob(Trk , Bk , Tvk , Tv
k , =k , =$k) (9.20)

(b) (F k) forms a broadcast field for both (.k*
) and (.k**

), as
defined in Subsection 4.2;

(c) Simulation 8k has ="k -error-correction for .k**
;

(d) The damage map of the simulation 8k is defined as in Subsection 8.1.

(The last condition explains the definition of =k+1 .) With Lemma 8.4, it
will imply the Restoration Property for the simulated trajectory.

The following definition is not needed for the simple non-ergodicity
result: A (uniform) amplifier is given by an amplifier frame Frame, uniform
sequences (Sim�transk), (Riderk), (Guard k), a hierarchical code

9=(Sk , Qk , .k*
, Riderk, qk , #k , ak)k�1 (9.21)

as in (4.13) and an amplifier (Mk , 8k)k�0 where 8k=(8*k , .k*
) is defined

as in Subsection 3.6, and a sequence of codes .k**
and fields Guard k such

that

(a) (Riderk), and (Guard k) form a guarded shared field for (.k*
),

(.k**
), as defined in Subsection 4.2;

(b) the damage map of the simulation 8k is defined as in Subsection 8.1;

(c) Trk is combined from Rd�transk and Sim�transk , with fields
Riderk, Guard k;

(d) Mk is as in (9.20);

(e) 8k has ="k -error-correction for .k**
.

Most of our effort will be devoted to proving the following lemma.

Lemma 9.4 (Amplifier). Every (broadcast) amplifier frame Frame
with large enough R0 can be completed to a uniform (broadcast) amplifier.

153Reliable Cellular Automata with Self-Organization

9.3. The Application of Amplifiers

Proof of Lemma 3.7. We will actually prove the more general
variable-period variant of the lemma, with Tk=Tvk .

Let us define a broadcast amplifier frame Frame e.g., as in Example 9.1.
Applying the Amplifier Lemma in the broadcast case, we obtain a broad-
cast amplifier with media Mk as in (9.20) with a hierarchical code having
a broadcast field (F k) for both (.k*

) and (.k**
). Let us denote the whole

system of code and the broadcast field (with the additional mappings #k)
by 9 as in (4.11). For any value u1 of the field F 1, we create an initial con-
figuration '1(} , 0)=1 (u1 ; 9) as in (4.12).

Then all properties but the initial stability property of an abstract
amplifier (defined in Lemma 3.7) are satisfied by definition. For the initial
stability property it is sufficient to note that each medium Mk is a robust
medium, with work period lower bound Tvk . Therefore, if 'k is a trajectory
of Mk and t<Tvk then for each x the probability that 'k(x, t){'k(x, 0) is
less than the probability that damage occurs in [x]_[0, Tvk]. This can be
bounded by the Restoration Property. K

Proof of Theorem 6.14. 1. This proof starts analogously to the
proof of Lemma 3.7.

Let us define an amplifier frame Frame as in Example 9.3, with the
rider transition function having the property

Rd�transk(r)=r0

i.e., leaving all fields (in particular, the rider and guard fields) unchanged.
Applying the Amplifier Lemma, we obtain a uniform amplifier with media
Mk as in (9.20) with a hierarchical code having a guarded shared field
Riderk with guard field Guard k as in (9.21). Let K be largest with BK�N.
For any infinite configuration * # (S1 .Rider1)Z, we create an initial con-
figuration '1(} , 0)=1 (*) with a guarded shared field (F k, Guard k), with
active level K. As mentioned after (4.30), if N is finite then 1 (*)=1 (*; K).
Let the trajectories '1, 'k be defined as before. Then we will have
'k(x, 0) .Guard k=&1 for all x, for k<K and 'K (x, 0) .Guard K=0.

Let x1=X(y) for a y in Visible(K(N), N) (since the code was chosen
such that |Visible(K(N), N)|=N, this is not really a restriction on y), and
let t1�0. Remember the definition of the aggregated input configurations
*k in (4.21) and of X(y, i; k) in (4.19). Eventually, we want to estimate the
probability of *(y)='1(X(y), t1) .Rider1 but we will use a generalization
corresponding to (4.26). Let

xk=ok+X(y, k), x$k=o$k+X$(y, k)

154 Ga� cs

1�k�K, then (4.20) shows that xk+1 is a cell of 'k+1(} , 0) whose body
contains xk with address y$k where y$k was defined before (4.19). Let Fk be
the event that

'k(xk , t) .Riderk=*k(x$k) (9.22)

and 'k(xk , t) .Guard k=&1 holds for t in [t1&Tvk �3, t1].

2. We have Prob[Fk+1 & cFk]�="k .

Proof. Assume Fk+1 . Then, according to the error-correction prop-
erty, except for an event of probability �="k , for every t in [t1&Tvk �3, t1]
there is a t$ in [t1&Tvk+1 �3, t] with

'k(xk , t) .Riderkp.k**
('k+1(xk+1 , t$))(y$k) .Riderk.

Since (Rideri) is a guarded shared field and 'k+1(xk+1 , t) .Guard k+1=&1
for all t in t1+[&Tvk+1 �3, 0], we can replace .k**

with .k*
in the above

equation. Fk+1 implies

'k+1(xk+1 , t$) .Riderk+1=*k+1(x$k+1).

The identification property and the aggregation property (4.22) implies

.k*
('k+1(xk+1 , t$))(y$k) .Riderk=*k(x$k).

Thus, except for an event of probability �="k , we have Fk .
Let

n=� [k : t1<Tvk �3 or k=K],

t2=t1&Tvn �3.

3. Consider the case t2<0.

By the construction and Proposition 4.7 the relation (9.22) holds for
k=n, t=0. Since the duration of [0, t1] is less than Tvn the probability
that 'n(xn , t) undergoes any change during this interval is less than =n ,
proving Prob[cFn]�=n .

4. Consider the case t2�0: then n=K<� and the space is finite.

According to the definition of !K
K in (4.27), and of '1(} , 0)=!K

1 (} , 0)
in the same proof, the value 'K (oK+ yBK mod N, 0) is defined for y in
[0, wN�BKx&1]. Thus, at time 0 the space is filled as much as possible

155Reliable Cellular Automata with Self-Organization

with adjacent cells of 'K one of which is xK . The set R=ZN_[0, t2] can
be covered by at most

r=WN�BK X W2t2 �TvKX

copies of the rectangle VK . Since 'K is a trajectory of the robust medium MK ,
the probability of damage on each of these rectangles is at most =K . There-
fore the probability that there is any damage in 'K over R is at most r=K .
Assume that there is no damage in 'K over R. Then the cling-to-life condi-
tion and the computation condition imply that all cells of 'K (} , 0) remain
nonvacant until time t2 . We defined Rd�transK () to leave the rider and
guard fields unchanged, and 'K (x, 0) .Guard K=0. Hence, by the definition
of ``combined'' in Subsection 9.1, for each of these cells z we have

'K (z, t2) .RiderK='K (z, 0) .RiderK

implying (9.22) for k=n=K. Hence the total probability upper bound is

:
n&1

k=1

="k+3t2=KQK

where we used N<BK+1=BKQK . With the parameters of Example 9.3, we
have =k Qk�=2k&2

for small enough =, and N<BK+1=e2K log K+O(K), hence
=K QK can be written as =h2(N) with

h2(N)=N c2 � log log N

for some constant c2 . K

Proof of Theorem 6.15. We proceed in analogy with the proof of
Theorem 6.14 using the same notation wherever appropriate and pointing
out only what is new or different. We will find out by the end what choice
for the functions h0(t) and h1(t) works. One can assume that Tr is com-
mutative in the sense of Subsection 7.1 since the methods of that subsection
can be used to translate the result for arbitrary transition functions. The
transition function Rd�transk() .Riderk on the rider track will be defined to
be the aggregated transition function TrB$k, as in Example 3.4, and the
Rd�transk() .Guard k will leave the guard field unchanged. With this, an
amplifier frame will be obtained as in Example 9.3. The Amplifier Lemma
gives a uniform amplifier with media Mk as in (9.20) with a hierarchical
code having a guarded shared field (Riderk), (Guard k) as in (9.21). The
parameters of that example are chosen in such a way that B$k=Bk and
therefore

|Visible(K, N)|=N. (9.23)

156 Ga� cs

Let ` be any trajectory of Tr over Z with `(} , 0) of the form Init(*) (see
(5.4)), satisfying 2 |Supp(`, t)|�s, where * # (S1 .Rider1 .Input)Z. For any s
and t1�0, let a sufficiently large K be chosen: we will see by the end of the
proof how large it must be. We certainly need

Supp(`, t)/Visible(K, N) (9.24)

which, in view of (9.23), can be satisfied if N�s�2. Let '1(} , 0)=
1 (Init(*); K). The trajectories '1, 'k are defined as before. Let x1=X(y)
for a y in Visible(K, N). Let `k(x, t) be the trajectory of the aggregated
cellular automaton CA(TrBk, Bk , B$k) with the aggregated initial configura-
tion @B$k

*
(`(} , 0)). Let

u=|wt2�Tv
Kx&1| +. (9.25)

Let Fk be the event that

'k(xk , t) .Riderk .Outputp`k(x$k , u) .Output (9.26)

and 'k(xk , t) .Guard k=&1 holds for t in [t1&Tvk �3, t1].

1. We have Prob[Fk+1 & cFk]�="k .

Proof. Assume Fk+1 . According to the error-correction property,
except for an event of probability �="k , for every t in [t1&Tvk �3, t1] there
is a t$ in [t1&Tvk+1 �3, t] with

'k(xk , t) .Riderkp.k**
('k+1(xk+1 , t$))(y$k) .Riderk.

Again, we can replace .k**
with .k*

here. Fk+1 implies

'k+1(xk+1 , t$) .Riderk+1 .Outputp`k+1(x$k+1 , u) .Output.

Hence, the identification property and the aggregation property (4.22)
implies

.k*
('k+1(xk+1 , t$))(y$k) .Riderk .Outputp`k(x$k , u) .Output.

Thus, except for an event of probability �="k , we have

'k(xk , t) .Riderk .Outputp`k(x$k , u) .Output.

2. Consider the case t2<0.

Then the statement of the theorem holds since the `(} , 0) .Output is
filled with V's.

157Reliable Cellular Automata with Self-Organization

3. Consider the case t2�0: then n=K<�.

According to the definition of '1(} , 0)=!K
1 (} , 0), at time 0, the space

is filled as much as possible with adjacent cells of 'K one of which is xK .
Let us define the intervals

I=. [Ck(y)+[0, BK&1] : C$K (y) is in any support of *K],

J=I & x1+BK (t2 �TvK+1)[&1, 1].

The set R=J_[0, t2] can be covered by at most

r=W |J |�BKX W2t2�TvKX<2(t2 �TvK+2) W2t2 �TvKX

copies of the rectangle VK . Since 'K is a trajectory of the robust medium MK ,
the probability of damage on each of these rectangles is at most =K . Therefore
the probability that there is any damage in 'K over R is at most r=K . Assume
that there is no damage in 'K over R. Then the cling-to-life condition and the
computation condition imply that all cells of 'K (} , 0) remain nonvacant until
time t2 .

We defined Rd�transk() to leave Guard k unchanged, and to be the
aggregated transition function TrB$k, on Riderk. We have 'K (x, 0) .Guard K

=0. Hence, by the definition of ``combined'' in Subsection 9.1, each cell in
each of its transitions during the damage-free computation, applies TrB$K to
the field RiderK, making at least wt2�Tv

Kx&1 steps. By (9.24), I contains
the image of a support of *K, therefore the confinement to this interval does
not change the result. Thus

'K (x, t2) .RiderK .Outputp`K (x, u) .Output,

and thus FK holds. This gives a probability upper bound

:
�

k=1

="k+2=K (t2 �TvK+2) W2t2 �TvKX.

Using (9.25) and (9.7) (and ignoring integer parts and the additive 1 and 2)
this can be upper-bounded by

:
�

k=1

="k+36=Ku2.

For small enough =, by (9.11), the second term is �u2=2K&2
, and hence

K�h0(u)=log log u+O(1)

158 Ga� cs

will do. This gives Tv
K=e4K log K+O(K)�(log u)5 log log log u for large enough u

showing that

t1�h1(u)=u(log u)5 log log log u

will do. K

Remark 9.5 (Non-Ergodicity Without the Error-Correction
Property). The paper(10) mentions no explicit error-correction property
in the proof of Theorem 2.5. Rather, it uses the fact that the fields Age and
Addr have a kind of automatic error-correction property. In this way, we
indeed arrive at several different invariant measures. However, one of these
two measures may just be a shifted version of the other one, allowing the
medium to be ``forgetful'' in the sense of Subsection 5.1.

10. SELF-ORGANIZATION

10.1. Self-Organizing Amplifiers

Consider a robust medium

M=Rob(Tr(w), B, Tv, Tv, =, =$, r). (10.1)

In what follows, it is convenient to speak of a distinguished value of the
field Color: let it be called ``blue.'' But the definitions and statements hold
for every value of Color.

When a cell turns from a vacant to a non-vacant state, we can dis-
tinguish two ways in which this can happen. The first one is if the cell has
a time with no non-vacant neighbor within Tv�2 before the event: let us
call this spontaneous birth; the second one is when it does not: let us call
this creation. Under certain conditions, spontaneous births are to be
prevented, since they may give rise to the wrong kind of cell. One way to
achieve this is to populate an area tightly with cells.

For an interval I not consisting of a point, let

1 (I, d)=[x : [x&d, x+d] & I{<] (10.2)

We will also write 1 (x, d)=[x&d, x+d&]. In a space-time configura-
tion ' of M, a point (x, t) is said to be controlled if 1 (x, B)_[t&6Tv, t]
contains a cell. It is blue if all cells in this area are blue. A space-time set
is controlled or blue if all of its points are. A medium has the lasting control
property if for all of its trajectories, for all sites x0 and times t1<t2 , with

I=1 (x0 , ((t2&t1)�Tv+4) B),

159Reliable Cellular Automata with Self-Organization

if I_[t1] is blue and I_[t1&2Tv, t2] is damage-free then (x0 , t2) is blue.
Let M1 , M2 be robust media, and 8 a simulation between them. We say
that this simulation has control delegation property if the following holds
for all sites x0 and time t1 with

I=1 (x0 , (8Tv
2 �Tv2+4) QB).

Let ' be a trajectory of M1 . If I_[t1&8Tv
2] is blue in 8*(') and the area

I_[t1&16Tv
2 , t1] is damage-free in ' then (x0 , t1) is blue in '.

For some parameters D, _>0, we will say that the trajectory (+, ') of
medium M is (D, _)-blue at time t if the following holds. Let I1 ,..., In be any
system of intervals of size D such that 1 (Ij , D) are disjoint. Then the prob-
ability that each of the sets Ij_[t&3Tv, t] is non-blue is at most _n.

Let us be given an amplifier as in (9.21), constants C1 , C2 , }1 , and a
sequence _k>0 with

_k Uk � 0,
(10.3)

_k+1�R0(Uk=k+Q2
k_2

k+e&}1Uk�Qk).

We will call this a self-organizing amplifier if the following properties hold:

(a) all media in it have the lasting control property;

(b) each of its simulations has the control delegation property;

(c) for every k, every time t, every trajectory (+, ') of Mk that is
(C1Bk , _k)-blue at time t, the trajectory (+, 8*k(')) of Mk+1 is (C1Bk+1 ,
_k+1)-blue at time t+C2Tv

k+1 .

Example 10.1. To the choices of Example 9.3, let us add the
choice _k=c&2e&k. Let us check (10.3). Its right-hand side is

c3k4=k+c&2k4e&2k+e&}1ck2
.

Given the bound =1.5k&1
on =k for k>1, (see (9.8)), this is less then c&2e&k

if c is large enough and = is small enough.

Lemma 10.2 (Self-Organization). Each amplifier frame Frame
with large enough R0 and small enough = can be completed to a self-
organizing amplifier with the property that if Rd�trans(r) .Guard=&1 for
all r then Sim�trans(r) .Guard=&1 for all r.

160 Ga� cs

10.2. Application of Self-Organizing Amplifiers

Proof of Theorem 6.17. 1. This proof starts analogously to the
proof of Theorem 6.14.

Let us define an amplifier frame Frame as in Example 9.3, with the
rider transition function having the property

Rd�transk(r) .Rider=r0 .Rider,

Rd�transk(r) .Guard=&1,

i.e., leaving the Rider field unchanged and always setting the guard field to
&1. It will have a broadcast field Color with m bits. Applying Lemma 10.2,
we obtain a self-organizing amplifier with media Mk as in (9.20) with a
hierarchical code having a guarded shared field Riderk, Guard k. Also, we
will have Sim�trans(r) .Guard=&1 for all r. Let

K=sup[k : 5Bk�N].

For a certain value of the field Color that we call Blue, we create an initial
configuration '1(} , 0) consisting of all blue latent cells covering the whole
space, with Guard=&1. Let the trajectories '1, 'k be defined as before. Let
(x1 , t1) be a space-time point. Eventually, we want to estimate the prob-
ability of Blue='1(x1 , t1) .Color1.

Let

I1=[x0],

v1=t1 ,

vk+1=vk&8Tv
k+1 ,

Ik+1=1 (Ik , (8Tv
k+1 �Tvk+1+4) Bk+1),

u1=0,

uk+1=uk+C2Tv
k+1 .

If k�K then by the self-organizing property of the amplifier, the evolution
'k is (C1 Bk , _k)-blue at time uk for each k. Let Fk be the event that
Ik_[vk] is blue in 'k.

2. There is a constant }1 such that

Prob[Fk+1 & cFk]�}1UkQk =k .

161Reliable Cellular Automata with Self-Organization

Proof. The right-hand side is an upper bound on the probability of
damage occurring in 'k in Ik+1_[vk+1 , vk]. If damage does not occur
there and Fk+1 holds then the control delegation property implies Fk .

Let

n=� [k : vk+1<uk+1 or k=K],

t2=un .

3. Consider the case n<K.

Then we have un<vn<un+1+(C2+8) Tv
k+1 . Let

J=1 (In , ((C2+8) Tv
n+1 �Tvn+3) Bn).

Let B be the event that J_[un] is blue in 'n. Since 'n is (C1Bn , _n)-blue
at time un for each n, the probability of cB is at most }2Un_n for some
constant }2 .

3.1. There is a constant }3 such that

Prob[B & cFn]�}3UnQn =n .

Proof. The right-hand side is an upper bound on the probability of
damage occurring in 'k in Jn_[un , vn]. If damage does not occur there
and B holds then the lasting control property implies Fn .

Thus, the probability that (x1 , t1) is not blue can be upper-bounded
by

}2 Un_n+}2 UnQn =n+}1 :
n&1

i=1

Uk Qk =k .

4. Consider the case n=K: then the space is finite.

Let B be the event that the whole space ZN is blue in 'n. Since 'n is
(C1Bn , _n)-blue at time un for each n, and 5Bn+1�N, the probability of
cB is at most }2Qn _n for some constant }2 .

4.1. There is a constant }3 such that

Prob[B & cFn]�}3UnQn t1 �Tvn =n .

Proof. The right-hand side is an upper bound on the probability of
damage occurring in 'k in Jn_[un , vn]. If damage does not occur there
and B holds then by the lasting control property, Fn also holds.

162 Ga� cs

Thus, the probability that (x1 , t1) is not blue can be upper-bounded
by

}2 Un _n+}1 :
n&1

i=1

UkQk =k+}3 UnQn t1 �Tvn =n .

Thus, the probability that (x1 , t1) is not blue can be upper-bounded in
both cases 3 and 4 (ignoring multiplicative constants) by

Un _n+ :
n&1

i=1

UkQk=k+UnQn t1 �Tvn =n=A1+A2+A3 .

With the parameters of Example 10.1 we have A2=O(=) and A3 can be
written, as in the proof of Theorem 6.14, as =h2(N) with

h2(N)=N c2 �log log N

for some constant c2 . Also, A1<e&}4n for some }4>0. If n=K then this
gives A1<e&}4K. Since N=e2K log K+O(K), thus

A1=O(N &0.4).

If n<K then t1=O(�n
k=1 Tv

k). Hence t1=e2n log n+O(1), giving

A1=O(t&0.4
1).

Both of these bounds are poor if t1 is small. But in this case there is a
trivial upper bound O(t2

1=) on the total probability that (x1 , t1) is not blue:
this bounds the probability that there has been any damage since the
beginning that could influence (x1 , t1). K

11. GENERAL PLAN OF THE PROGRAM

Our eventual goal is to prove Lemma 9.4 (Amplifier). The medium
Mk+1 to be simulated has reach 1. The simulation is the composition of
two simulations. First, we simulate Mk+1 by a medium M$k having reach 2,
and then we simulate M$k by a medium Mk having the same cells but with
reach 1. The latter simulation uses the construction in Theorem 8.10. The
bulk of the work is in the first simulation, to which now we proceed. From
now on, we fix the level k of the simulation hierarchy, refer to medium M$k
as M and to medium Mk+1 as M*. The subscript will be deleted from all
parameters in M and a superscript V will be added to all parameters of M*.

163Reliable Cellular Automata with Self-Organization

We will refer to cells of M as small cells, or simply cells, and to cells of M*
as big cells.

According to the definition of an amplifier frame, the medium M has
two special fields called Rider and Guard, and can also have other fields.
These two fields will be subfields of the field Info in our medium. In what
follows we define the function Sim� trans only: the function Rd� trans is
given in advance. The updating of Rider and Guard is determined by the
rule (9.1). Thus, Sim� trans determines the next value of Rider only in case
of Guard{0, and the next value of Guard in case of Guard<0. We will not
point out always that what we define is only Sim�trans but this is to be
understood. In particular, when our program requires to update Info then
in the subfield Rider this will be actually carried out only if Guard{0.

For simplicity, the proof will only be given for qk=Qk (see 4.1.4). The
general case is not more difficult, but would need extra notation. The track
Info of a colony contains the string that is the state of the represented
cell, encoded via an error-correcting code. Info consists of two subfields,
Info.Main and Info.Redun. The track Info.Main contains the intended
original information, including Rider and Guard. The track Info.Redun con-
tains ``parity checks'' for the string on track Info.Main, but contains only
0 in cell 1 (due to the ``controlling'' property). Since Rider must control cell
1 of the colony in the sense of 4.1.3, the track Redun does not use cell 1.
For the error-correcting code, the field Info.Main will be subdivided into
``packets'' such that the parity check bits for each packet will be computed
separately. The fields Rider* and Guard* will occupy packets disjoint from
the other fields and therefore the error-correction for the other fields will
proceed without difficulty even if, e.g., the error-correction for Rider* is
prevented by Guard*=0.

The program will be described in a semi-formal way; the present sec-
tion overviews it. Later sections restrict the program more and more by
giving some rules and conditions, and prove lemmas along the way. The
typical condition would say that certain fields can only be changed by
certain rules. The language for describing the rules is an extension of the
one given in Subsection 7.4. We will introduce a fair number of fields but
they are all relatively small.

All fields but Info.Main are contained in Buf (see 2.2.1) and hence are
visible by neighbor cells and changeable immediately even by the separable
transition function. Cells have an address field which determines the only
colony (Q-colony) to which the cell belongs. A colony C(y) has base y. All
properties and relations defined for colonies are automatically defined for
the sites of potential big cells at their bases and vice versa. The Age field
of a cell, called its age, can have values in [0, U&1], but the upper bound
will typically not be reached.

164 Ga� cs

11.1. Damage Rectangles

The damage map of the simulation .=.k was defined in Subsection 8.1.
Let us write

Damage=Damage('), Damage*=Damage('*).

Lemma 8.4 proves the Restoration Property for '*=.*(') whenever ' is
a trajectory of M. In the Computation Property applied to a cell x of '*,
we are given a rational number a satisfying f1(x, a, ')=1, i.e., throughout
the rest of the construction, it is assumed that Damage* does not intersect
the set

W 1*(x, a)=[x&2QB, x+3QB&]_[a&Tv*�2+, a+2Tv*]

(where we used the fact that the reach of '* is 1). Recall some definitions
from Subsection 8.1. We had V=[&B�4, B�4&]_[&Tv�4+, 0]. We have
'*(x, t) # Bad iff Damage(') contains at least two points u, v such that
u+2V, v+2V are disjoint and even u+3V, v+3V are contained in
(x, t)+4V*+(B*�2, 0) (see Fig. 14). Let

V$=[u : u+3V # V*+(QB�2, 0)]. (11.1)

The later definitions (13.4), 13.10) imply Q>10, Tv*>6Tv. This guarantees
that the space projection of V$ is at least 1.5QB and the time projection is
at least Tv*�2. We have '*(x, t) � Bad iff there is a rectangle of the form
(y, u)+2V covering Damage & (x, t)+V$. It is easy to see that if Damage*
does not intersect W 1* then there is a finite set of small rectangles of this
latter form covering Damage & W 1* such that each rectangle of the form
(z, w)+V$ intersects at most one of them. We will call these small rec-
tangles the damage rectangles.

Let us say that the damage affects (x, t0) directly unless one of the
following occurs:

(1) [x]_[t0&2Tv&Tv�2+, t0] is disjoint from the damage
rectangle;

(2) There is a dwell period [t1 , t2] of x with t0&2Tv<t2�t0 such
that [x]_[t1&Tv�2+, t0] is disjoint from the damage rectangle;

(3) There is a switching time t2 of x with t0&2Tv<t2�t0 such that
[x]_[t2&Tv&Tv�2+, t0] is disjoint from the damage rectangle.

This definition encompasses the cases when damage prevents the application
of parts (a), (b), (c) or (d) of the Computation Property for concluding
about (x, t0).

165Reliable Cellular Automata with Self-Organization

We will say that (x, t0) is affected via neighbors if in the above defini-
tion, one of the conditions does not hold with the interval [x&2B,
x+3B&] in place of [x]. This encompasses the cases when damage
prevents the application of parts (e), (f), (g) or (h) of the Computation
Property. Thus the damage can affect more cells via neighbors but only
during the same time interval.

By the definition of V, the (half-open) damage rectangle has width B
and duration Tv�2; therefore it can affect at most one cell directly, for less
than 2Tv+Tv�2 time units. For each damage rectangle we define a corre-
sponding extended damage rectangle, an upper bound on the set of points
affected directly. Generally, such a rectangle will be denoted by the Cartesian
product

[a0 , a1&]_[u0+, u1&] (11.2)

with a1&a0=B, u1&u0=2Tv+Tv.

Lemma 11.1. Suppose that (x, u) is not affected directly by damage
but is affected via neighbors. Then x is not affected directly during
[u&5Tv, u] and not affected even via neighbors during [u&5Tv,
u&3Tv]. If (x, u) is the end of a dwell period then x is not affected via
neighbors during [u&5Tv, u&2Tv].

Proof. Some damage occurs near x but not in x at some time t1

during [u&2Tv&Tv�2+, u]. When (x, u) is the end of a dwell period
then, since x is affected via neighbors, t1�u&Tv&Tv�2. Then it does not
affect x directly at all. Clearly, no other damage rectangle affects directly x
during [u&5Tv, u], and this damage rectangle does not affect x before
t1&Tv�2. K

11.2. Timing

Let

*=Tv�Tv. (11.3)

Different actions of the program will be carried out with different speeds.
We introduce some delay constants:

4*<p0<p1<p2 (11.4)

whose value will be defined later. The slowdown uses a subdivision of the
state into the following fields:

Wait, Cur, Fut.

166 Ga� cs

Here, Wait takes values 1,..., p2 , and Cur, Fut have equal size. We will
work almost exclusively with the field Cur, which represents the ``current
state''. Its subfields Cur.F, will simply be written as F. An assignment will
typically have the form

F :=p v.

This means that F.Fut gets value v and Wait gets value p. The default
change of Wait is to decrease it by 1 if it is different from 1. When Wait=1
then Fut will be copied into Cur. Missing subscript in the assignment
means p= p0 . Thus, all examined fields are understood to be the corre-
sponding subfields of Cur and all changed fields are understood to be the
corresponding subfields of Fut.

Condition 11.2 (Waiting).

(a) A field Cur.F can only be changed when Wait.F=1, in which
case it is set to Fut.F.

(b) A field Wait.F can only either decrease by 1 until it reaches 0 or
stay 0, or be set to one of the values 1,..., p2 .

(c) If Fut.F changes then Wait.F will be set to one of the values
1,..., p2 .

E.g., the proper reading of rule

cond [
? Addr=0 and Addr1=0
! Kind :=p Latent

]

is that if Cur.Addr(x)=0 and Cur.Addr(x+B)=0 then Fut.Kind(x) must
be set to Latent and Wait.Kind(x) must be set to p.

We will have Cur & Inbuf =< where Inbuf was defined in 2.2.1. Thus,
Cur will never be changed in one step in response to a change in a
neighbor cell.

11.3. Cell Kinds

The values of the address field Addr will vary in [&Q, 2Q&1]. The
cells whose colony is their originating colony, will be called inner cells, the
other ones will be called outer cells. Cells will be of a few different kinds,
distinguished by the field

Kind

167Reliable Cellular Automata with Self-Organization

with possible values (for j # [&1, 1]) Vac, Latent, Channelj , Growth j ,
Member, Germ. The kind of a non-germ, non-latent cell is determined by
Age and Addr. The kinds of cells are ordered by strength, as follows:

Vac<Latent<Germ<Channelj<Growthj<Member.

Stronger cells prevail over weaker ones in conflicts about who should
create a neighbor. The relation Kind(x, t)=Vac means that there is no cell
at site x at time t.

Condition 11.3 (Latent Cells).

(a) A vacant cell can only turn into a latent one.

(b) A latent cell has Guard=&1 (else it is bad).

A cell will be called dead if it is vacant or latent, and live otherwise.
Killing a cell x means turning it latent: only when place must be vacated
for a new nonadjacent cell whose body intersects the body of x will it be
turned vacant. This will imply Condition 8.7 (Cling-to-Life). Members have
addresses in [0, Q&1]. They are the strongest kind in order to maintain
the integrity of colonies.

A right outer cell has (by definition) addresses�Q, and a left outer
cell has addresses<0. Germ cells have addresses in [&Q, 2Q&1].

11.4. Refreshing

Since several damage rectangles can occur during a work period, a rule
called Refresh will be performed several times during the work period and
will attempt to correct information by global decoding-encoding. The last
step of each invocation of Refresh will be called a refreshing step. The
number of steps between invokations of Refresh will be

(refresh�time)=Tv*�Tv (11.5)

making sure that at most one damage rectangle may occur between
refreshings.

Certain fields, called locally maintained fields, will be kept constant
over the colony, for most of the work period. Here are some of these. The
field Doomed is 1 if the represented big cell must be removed (the site to
become vacant), and 0 otherwise. Cells with Doomed=1 are called doomed.
Cells will have fields

Creatingj , Growingj (j # [&1, 1])

168 Ga� cs

with values 0 or 1. Creatingj=1 will mean that a cell is a creator in the
sense of Condition 8.6 (Creation). Creating j of a big cell will be broadcast
into Growingj of its small cells. Growingj=1 signifies the collective decision
of the colony to grow a new neighbor colony in direction j. The track

Control0.1 j

controls the retrieval of information from neighbor colonies. It will be
updated periodically by the subrule Retrieve.

The globally maintained field

End

will be locally updated by the rule

Find�end.

The work period will end when Age=End. This will help setting the
absolute duration of the work period more predictably. The default value
of End is U&1 and we will always have End �Age.

Each locally maintained field F has some update ages: ages when F will
be recomputed. An interval of size 4Q around each of these ages will be
called an update interval for F.

11.5. A Colony Work Period

The main stages are as follows:

Idle;
Extend;
Idle;
Retrieve;
Compute;
Idle;
Find�end;
Grow;
Shrink;
Finish.

The numbers,

(compute�start)<(idle�start)<(grow�start)<(grow�end)<End

169Reliable Cellular Automata with Self-Organization

define the ages starting or ending important stages of this program and will
be defined later. The idle stages make sure that

v the computation and communication times are positioned correctly;

v faults in one part have limited effect on other parts.

The numbers up to (idle�start) (i.e., (compute�start) and (idle�start)) are
constant, and the numbers End&(grow�start) and End&(grow�end) are
also constant. The difference (grow�start)&(idle�start) is not constant
since End will be a computed value. Here is a short description of the
major stages.

Extension. The subrule Extend tries to extend some arms of the
colony left and right, to use in communicating with a possible non-adjacent
neighbor colony. In direction j, if it is not adjacent to another colony it will
extend an arm of cells of kind Channelj . In channel cells in the positive
direction, the Addr field continues its values through

Q, Q+1,..., 2Q&1.

Similarly in channel cells in the negative direction. Channel cells are
weaker than member cells, so the growth of a channel does not normally
damage another colony. The channels will be killed at the end of the com-
putation.

Retrieval. Retrieval starts at age (compute�start). During this, the
colony tries to retrieve the state represented by it and its neighbor colonies.
The neighbor colonies will cooperate in this, having a dedicated mail track
and control track for serving each neighbor. Atomicity will be guaranteed
by waiting, similarly to the proof of Theorem 8.10 (Reach Extension).

Computation. The subrule Compute computes the output of the
simulated transition function and stores it on the track Hold. It will put
Doomed=1 into each cell of the colony if the represented cell is to be
erased. We will always set Doomed=0 at Age=(compute�start).

Idling. After the computation, some idling puts sufficient time
between it and the end of the work period to make sure that the retrieval
falls into the observation part of the work period. Procedure Find�end
computes End.

Growth. If Growingj=1 then, between values (grow�start) and
(grow�end), the colony tries to extend an arm of length at most Q in
direction j. These cells are of kind Growthj , or growth cells.

170 Ga� cs

Birth. A latent cell x turns immediately into a germ cell with address
&Q and age 0. The germ thus started begins to grow to the right, trying
to fill 3 colonies until age (germ�grow�end). At

Age=(germ�end)&1

germ cells turn into member cells.
Germs will implement the self-organizing property of the medium.

Shrinking. When they reach the end of their growth period, growth
and germ cells stop producing offshoot. In what follows, all edges whose
existence is not justified by these processes (these edges will be called
``exposed'') will be subject to the process Decay. Therefore normally,
a growth either disappears before the end of the work period or it covers
a whole new colony by that time. Similarly, germ cells are required to cover
3 neighbor colonies.

Finish. Rule Finish will be called when Age=End. It reduces the
addresses of growth cells mod Q. Outer cells and inner germ cells turn into
members. If the colony is doomed it will be erased, (starting from the right
end, since a doomed right endcell will be considered inconsistent with its
neighbors). Otherwise, the information from the Hold track will be copied
into the corresponding locations on the Info track. This final rule will take
only a single step, and will also be called the cut.

11.6. Local Consistency

The basic structural soundness of a colony will be expressed by some
local consistency conditions. Two cells locally consistent with each other
will be called siblings. For j # [&1, 1], let

Sib(j)=1

if cell x is a sibling of its adjacent neighbor in direction j, and Sib(j)=0
otherwise. Sometimes, rules refer to the relation Sib() but can be under-
stood without going into the details of the definition of this relation itself.

11.6.1. Siblings

Two aligned cells x and x+iB will be called space-consistent if
Addr(x+iB)&Addr(x)#i (mod Q).

Let us consider cells x and y=x+ jB for j=&1, 1, with |Addr(x)|<
|Addr(y)|. These two cells belong to the same work period if

0�Age(x)&Age(y)�1.

171Reliable Cellular Automata with Self-Organization

They straddle a work period boundary if Age(x)=0, Age(y)=End. They are
siblings if one of the following two properties holds.

(1) x, y belong to the same work period, originate at the same
colony, either are both germ cells or neither of them is, and x is not a
doomed right endcell with 0<Age<(compute�start).

(2) x, y belong to the same colony, and straddle a work period
boundary.

Of course, siblings are space-consistent. An interval of cells in which the
neighboring cells are siblings will be called a domain. A domain of size n
will also be called a n-support of its members. Let us call two cells relatives
if they can be embedded into a common domain but are not necessarily in
one. A colony with starting cell x will be called full if it is covered by a
domain in such a way that Addr(x+iB)#i (mod Q).

11.6.2. Age Updating

The rule for updating age is similar to the ``marching soldiers'' rule for
updating Age in Subsection 7.1. As seen from the definition of siblings
above, we impose some extra order on age: the age of all cells in the same
extended colony must be non-increasing as they become more distant from
the cell with Addr=0. Also, there will be a bit

Frozen

with the property that when Frozen=1 then Age will not be changed. Here
is the basic updating rule for age:

rule March [
cond [

? Frozen=0 and Age<End and \j # [&1, 1] �j (x) is dead or the
the increase of Age does not break the sibling relation with
�j (x)

! Age :=p1
Age+1

]]

Condition 11.4 (Address and Age).

(a) Only Finish can change Addr of a live cell;

(b) Only March and Finish change Age of a live cell.

11.6.3. Repairs

The rule Purge eliminates isolated cells. The rule Heal repairs a small
hole. An unrepaired hole will be enlarged by the rule Decay: this will even-
tually eliminate partial colonies.

172 Ga� cs

The damage rectangle can destroy the information represented on its
space projection, therefore the information representation on the Info track
will be a redundant, error-correcting code. Information will be decoded
before computation and encoded after it. The damage can also disrupt the
computation itself therefore the decoding-computation-encoding sequence
will be repeated several times. The result will be temporarily stored on the
track Hold.

11.6.4. New Colonies

The following condition helps enforce that newly created cells in the
simulation are latent.

Condition 2.5 (Outer Info). Suppose that .*(')(x, t) � Bad,
and the colony with base x at time t is full and is covered with member
cells belonging to the same work period, and is not intersected by the
extended damage rectangle. Then .*(')(x, t) depends only on the Info
track of this colony via some decoding function :*. If the colony is covered
with germ or outer cells then the state that would be decoded from this
track is latent.

11.7. Plan of the Rest of the Proof

In order to preserve intelligibility and modularity, rules and conditions
belonging to the program will only be introduced as they are needed to
prove some property.

The crucial Lemma 14.7 (Attribution) says that soon after the disap-
pearence of the big damage Damage*, all live non-germ cells not imme-
diately arising from Damage can be attributed (via a path of ancestors) to
some nearby colonies (all disjoint from each other). Thus, this lemma
enables us to reason about the process over this area in terms of big cells.
The lemma is important, e.g., in seeing that a big cell can grow a neighbor
if no other cell is nearby. In terms of colonies, this means that if no other
colony is nearby, then a colony can grow and create a neighbor colony.
This is not obvious since there could be ``debris'': earlier damage could
have left bits and pieces of larger colonies which are hard to override locally.
The Attribution Lemma will guarantee that those bits and pieces are not
there anymore at the time when they could be an obstacle, since whatever
is there is attributable to a big cell.

The Attribution Lemma also plays a role in healing. Most local heal-
ing is performed by the rule Heal. However, if the damage occurs at the
end of some colony C then it is possible in principle that foreign material

173Reliable Cellular Automata with Self-Organization

introduced by damage is connected to something large outside. The
Attribution Lemma will imply that the foreign matter is weaker and can
therefore be swept away by the regrowth of the member cells of C.

The idea of the proof of the Attribution Lemma is the following.
Suppose that (x0 , t0) is a cell whose origin we want to trace. We will be
able to follow a steep path (xi , ti) of ``ancestors'' backward in time until
time tn=t0&mQ with some large coefficient m. Lemma 13.3 (Ancestor)
shows that it is possible to lead a path around a damage rectangle. The
attribution consists of showing that (xn , tn) belongs to a domain covering
a whole colony. To prove this, we will show that the rule Decay, which
eliminates partial colonies, would eventually cut through the steep path
unless the latter ends in such a domain. In actual order, the proof proceeds
as follows:

v Some of the simpler killing and creating rules and conditions will be
introduced, and some lemmas will be proved that support the reasoning
about paths and domains.

v We prove the Ancestor Lemma. Lemma 13.5 (Running Gap) says
that if a gap is large enough then the process Decay propagates it fast, even
in the presence of some damage.

v Lemma 14.2 (Bad Gap Inference) shows that (under certain condi-
tions and in the absence of damage), if there is a gap at all then it is large
enough in the above sense.

v The above lemmas are used to prove the Attribution Lemma.

Here is a summary of the roles of different delays:

p0 : Default;

p1 : Decay and computation;

p2 : Growth.

Here is a summary of the rest of the proof.

v We define those computation rules not dependent on communica-
tion with neighbor colonies.

v Lemma 16.5 (Legality) shows that the computation terminates
gracefully independently of the success of communication.

v The development of colony C will be followed forward to the
present in Lemma 16.7 (Present Attribution).

v Finally, the retrieval rules will be defined and the remaining part of
the Computation Property will be proved.

174 Ga� cs

12. KILLING AND CREATION

The present section collects some rules, conditions and properties that
will be needed in the rest of the construction. The material is somewhat
heterogenous, but is related mostly to consistency, killing and creation.

12.1. Edges

Let

e&1=0, e1=Q&1.

A cell x is a colony endcell in direction j if Addr(x)#ej (mod Q). Outer or
germ cells before the end of their growth ((grow�end) resp. (germ�grow�
end)) are said to be in their expansion period, and are called expansion cells.

Suppose that cell x has no siblings in direction j. It will be called a
protected edge in that direction if it is some legitimate boundary in that
direction, in the sense described below; otherwise, it will be called an
exposed edge. For each kind of cell listed below, the cell is defined to be
protected if the statement listed after the colon is true; othewise, it is
exposed.

Member: Colony endcell in direction j, except if it is a doomed
right endcell with 0<Age<(compute�start);

Expansion: In direction j if this is the direction of expansion,
except when it is a channel cell with Age�(idle�start);

Non-expansion, germ: Outer colony endcell in direction j if
this is the extension direction and the cell is not outer with Age>
(germ�end)&2Q;

Non-expansion, outer, non-germ: Any colony endcell in direc-
tion j if this is the extension direction.

In a rule, the condition that x is an exposed edge in direction j will be
expressed by

Xposedj=Xposedj (x)=1.

An exposed edge is the sign of defect, or a call to eliminate an extension
of a colony or a colony; the decay rule will kill an edge cell if it stays
exposed too long.

175Reliable Cellular Automata with Self-Organization

Lemma 12.1. If a left exposed edge dies and its right sibling was
not a colony endcell then this neighbor becomes a left exposed edge. The
same holds if we replace left with right.

Proof. This is obvious in most cases. One case when it is not is when
the exposed edge is a left outer cell that is not an expansion cell. It is
imaginable namely that its right neighbor is still in the growth stage.
However, our definition of siblings requires the ages of cells to be
monotonically nonincreasing as we move away from the originating
colony, therefore this is not possible.

The situation is similar when a doomed exposed right endcell dies. K

A multidomain is either a domain or the union of some adjacent space-
consistent domains meeting in protected colony-endcells. From the above
definitions it is clear that only a cut can turn a domain into a multidomain.

12.2. Killing

Generally, a cell will be ``killed'' by making it latent. Killing will be
announced first by making a one-bit field

Dying

equal to 1. (The default value of this field is 0.) This feature will disable the
cell from creating a live neighbor (just in the interest of continuity and ease
of reasoning). So, whenever the program will kill a cell it will call the
following subrule: its argument determines its speed.

subrule Die(p) [
Dying :=p 1;
Kind :=p Latent
]

The killing of a cell is almost always a corrective action, except when
the definition of ``protected'' makes certain cells exposed with the intention
of killing off a whole channel or colony.

Condition 12.2 (Dooming). The only rules that change the field
Doomed without killing the cell are the following.

(1) The subrules Animate and Heal when they create a non-doomed
cell;

(2) At Age=(compute�start), we set Doomed=0;

(3) At Age=(idle�start) we possibly set Doomed=1.

176 Ga� cs

We call two cells partners if one of the following cases holds:

(1) They are relatives at distance 2B and the cell between them is not
their sibling;

(2) They are adjacent non-siblings and changing the age of one of
them by 1 makes them siblings.

When a cell has a partner then it may happen that one of its neighbors will
be corrected in a short while to become a sibling, therefore the cell will be
frozen by the rule Freeze below. A frozen cell's age will not be advanced
(seen the rule March in 11.6.2), making the neighbor's correction easier.

rule Freeze [
cond [

? x is exposed or has a non-dying partner
! Frozen :=1
?! Frozen :=0
]]

Condition 12.3 (Freeze). Only the rule Freeze can change the
field Frozen.

12.3. Creation, Birth, and Arbitration

rule Create [
pfor j # [&1, 1] do [

cond [
? Kind=Vac and Creating& j

j =1
! Kind :=Latent
]]]

This rule is slightly different from the other ones since the site to which
it is applied is vacant. Therefore in simulation, the cell x is not really there
to ``apply'' this rule; it is applied implicitly by its creator neighbor �& j (x).
We will call this neighbor the mother of the new latent cell.

rule Birth [
cond [

? Kind=Vac and Kindj=Vac (j=&1, 1)
! Kind :=Latent
]]

This rule tries to give rise to a newborn cell if its neighbors are vacant. As
the Computation Property shows the birth rule will not be enforced by the

177Reliable Cellular Automata with Self-Organization

trajectory property. (Still, birth will be realized for big cells when germ cells
succeed in creating a new colony.)

Condition 12.4. Create and Birth are the only rules applicable to
a vacant cell.

Condition 12.4 implies that in all cases different from the one listed in
the rules Create or Birth, the site is required by the transition function to
remain vacant. Case (h) of Condition 8.8 (Computation Property) allows
for the creation to be blocked by a cell whose body intersects the cell to
be created.

Let us proceed to the definition of rule Arbitrate which controls the
values of the field Creating j . Consider the example of a cell x and its left
nonadjacent neighbor y=�&1.5(x) that may want to create a cell in y+B,
overlapping the body of x. Whether x will be erased will be decided not by
whether y is stronger than x but by whether the new cell y+B would be
stronger than x.

Remark 12.5. This distinction matters when a colony wants to
create an outer cell that would intrude into another colony. It is important
in this case for the created cell to be weaker than the member cells of the
other colony with whom it is competing for space.

To simplify the expression of the rule, for a relation R, let

a <
R

b

mean ``a<b or (a=b and R holds).'' The kind of cell to be created must
have been declared in field Kind& j of �j (x). This field is actually a function
of two fields called

Kindj .Grow, Kindj .Heal

which will be set by the rules Grow�step.active and Heal (see later), and is
defined as

Kindj .Heal if Dying=0, Kindj .Heal{Latent,
Kind j={Kindj .Grow if Dying=0, Kindj .Grow{Latent,

Latent otherwise.

Condition 12.6. The default value of Creatingj is 1. The only rule
changing Creatingj is Arbitrate.

178 Ga� cs

rule Arbitrate [
pfor j # [&1, 1] do [

cond [
(1) ? Kind=Latent and Kind 1.5 j

& j >
j=1

Kind & j
j and Creating& j

j =0
! Kind :=Vac

(2) ? Kind{Latent and (Kind j
& j >

j=1
Kind or Kind 1.5 j

& j >
j=1

Kind)
! Die(p0)
? Kind j{Vac

(3) ! Creatingj :=0
?! Creatingj :=1
]]]

Part (2) erases a cell if another cell must be put in its place (initiated by
a non-dying cell) that is stronger or has the same strength but is initiated
from right. Part (1) erases a latent cell fast. This part will be stronger than
any other rule possibly conflicting with it (which, in other words, would
just set some fields of the cell instead of erasing it). The role of the condi-
tion Creating& j

j =0 will be seen in the next lemma. According to (3), the
rule turns off Creatingj (x) as soon as the job of creating the neighbor
x+ jB is done.

Remark 12.7. The rule also shows that the default value of
Creatingj is 1. Therefore even a latent cell creates a neighbor if nothing is
in the way. This will be used for the self-organization properties.

The following lemma shows that the rules Arbitrate and Create indeed
succeed in creating a new cell. Here, cell x&B will create a cell at site x.
Creation from the right is analogous. Let

{i=(pi+1) Tv. (12.1)

Lemma 12.8 (Creation). Assume the following, with I=[t0 ,
t0+{0+4Tv]:

(a) [x&B, x+2B]_I is damage-free;

(b) '(x&B, t).Dying=0 and

'(x&B, t).Kind1�'(y, t).Kind 6 '(y, t).Kind&1

for all (y, t) in [x+, x+2B&]_I.

Then '(x, t){Vac for some t in I.

179Reliable Cellular Automata with Self-Organization

Proof. Let us assume, on the contrary, that x is vacant during all
of I, and we will arrive at a contradiction.

The conditions and the rule Arbitrate imply that we have
'(x&B, t) .Creating1=1 at some t1�t0+{0 and this stays so while x is
vacant. Now the rule Create requires that x become a cell. However,
Condition 8.8 (Computation Property) requires x to actually become a cell
by time t1+2Tv only if the body of no existing cell intersects with the body
of x: see case (h). Suppose therefore that some cell y intersects the body of
x during [t1 , t1+2Tv].

1. Suppose that y does not disappear before t0+{0 .

Then part (3) of rule Arbitrate implies that during this time,
Creating&1(y+B) becomes 0, hence y+B loses the ability to recreate y
fast from latency. Part (2) of the same rule makes y latent within {0 time
units. Part (1) then erases y within 2Tv units of time.

Any new cell y$ posing a similar obstacle to creating x could arise only
if y+B creates it. Indeed, the only other way allowed by the Computation
Property is case (g) there; however, this case, reserved for the possible
appearence of a latent cell out of ``nothing,'' (indeed, out of lower-order
germs) requires �j (y$, t) to be vacant for all j, i.e., that y$ have no (adjacent
or non-adjacent) neighbors. But, x&B would be such a neighbor, so y$ will
not appear.

Thus, x will be created within 2Tv time units after the disappearence
of y.

2. Suppose that y disappears before t0+{0 .

If it does not reappear within 2Tv time units then x will be created
as above. Suppose therefore that y reappears. When it reappears we
necessarily have Creating&1(y+B)=1. This turns 0 within {0 time units.
After it turns 0, the rule Arbitrate erases y within 2Tv units of time and
then x will be created in 2Tv time units. Cell y will not be recreated to pre-
vent this since Creating&1(y+B)=0 for at least p0Tv>4Tv time units. K

12.4. Animation, Parents, Growth

A latent cell x can come to life by a rule in three ways: by the rules
Animate, Heal, or by starting to develop as a germ cell. The subrule
Animate(j, p,...), j # [&1, 1], gives the new cell the appropriate field values.

The field Becoming (default value 0, reset when Animate is not
applicable) is used to slow animation by its assignment parameter p. The
condition Dying=0 in the rule below makes sure that (in absence of

180 Ga� cs

damage) the mother is still alive when x becomes live. The subscript p0 in
the last assignments makes sure that once the decision is made to revive the
cell, its age is set fast enough in order that it does not stay much behind
the age of the creating cell. This way, the created cell becomes a sibling of
the creating one.

subrule Animate(j, p, F1 , v1 , F2 , v1 ,...) [
cond [

? Kind=Latent and Dying j=0 and (
(�2j (x) is a sibling of �j (x) and Dying j=Dying2j=0)
or (Kind j=Germ and Addr j=&Q and Dying j=0 and
there is no non-germ neighbor towards & j))

! cond [
? Becoming=0
! Becoming :=p 1
?! &pfor i=1, 2,... do Fi :=p0

vi]
?! Becoming :=p0

0
]]

The cell �j (x) used here is called the mother cell. In case the same result
could also have arisen using cell �& j (x) then the mother cell is the one
closer to the center of its colony.

The following lemma is immediate from the definition of the animation
rule.

Lemma 12.9 (Animation Support). Suppose that

(a) a cell x has just been animated at time t by a non-germ neighbor
y=�j (x) (this rule, with observation time t$ being a possible explanation
for its becoming live);

(b) x+[&3B, 4B]_t+[&3Tv, 0] is damage-free;

(c) there is no colony-boundary between y and its sibling required
by the rule.

Then y and its sibling survive until after t.

Proof. The animation requires a sibling for y with both y and the
sibling non-dying. Due to the minimum delay p0 in dying which they did
not even begin, these cells remain live till after t. Since there is no colony
boundary between them, a cut will not break the sibling relation of these
cells either. K

181Reliable Cellular Automata with Self-Organization

Remember that whether a cell has kind Channel or Growth can be
determined from its age. Therefore it is sufficient to have one value

Extj

in place of Growthj and Channelj . Rules Extend and Grow both rely on the
following subrules.

subrule Grow�step.active(j) [
cond [

? Kind=Germ and j=1
! Kindj .Grow :=Germ
? (Addr=ej or Kind=Extj) and Sib(& j)
! Kindj .Grow :=Ext j

?! Kindj .Grow :=Latent
]]

subrule Grow�step.passive(j) [
cond [

? Kind=Latent and Kind & j
j # [Germ, Extj]

and Kind & j
j >

j=1
Kind j

& j

! if possible, make x consistent with �& j (x) using
Animate(& j, p2 , Kind, Growth j ,...)
]]

The rule Extend serves to extend the channel in direction j during the com-
putation time of the colony.

rule Extend [
pfor j=&1, 1 do [

cond [
? Age # [0, (compute�start)&1]
! Grow�step.active(j)
? Age& j # [0, (compute�start)&1]
! Grow�step.passive(j)
]]]

The rule Grow depends on the fields Growingj . The computation rule (to be
defined below) turns this field to 1 in all cells of the colony iff the field
Creatingj in the big cell represented by the colony has value 1. Otherwise,
it will be 0 in all cells. The healing rule, to be given later, keeps this locally
maintained field constant throughout the extended colony.

182 Ga� cs

rule Grow [
pfor j=&1, 1 do [

cond [
? Age # [(grow�start), (grow�end)&1] and Growingj=1
! Grow�step.active(j)
? Age& j # [(grow�start), (grow�end)&1] Growing& j

j =1
! Grow�step.passive(j)
]]]

For germs, the growth rule is similar. However, growth will proceed always
to the right and the time intervals in which it occurs will be defined later,
in the germ program.

12.5. Healing

Let F1 :=v1 ,..., Fk=vk be an assignment changing some fields of x.
This assignment is an internal correction if the following conditions hold:

(a) For j # [&1, 1], we have Dying j=0. Also, Frozen j=1 unless
�j (x) is a sibling of x.

(b) After the assignment, but not before, x and its two neighbors
form a domain in which the following holds: for each locally maintained
field F, if Age is not in the update interval of F (as defined in Subsection
11.4) then F=F j for j # [&1, 1].

(c) In each direction j, the domain, with constant values for the
locally maintained fields, continues to the second neighbor unless the first
neighbor is a protected colony endcell towards j.

If x is latent and one of its neighbors is an endcell of its colony protected
in the direction away from x then the internal correction will be called
a near-end-correction. An assignment to make a non-germ cell is an end-
correction to the right if the following holds:

(a) Dying&1=0. Also, Frozen&1=1 unless �&1(x) is a sibling of x.

(b) After the assignment, but not before, the following holds: x is the
right-protected right endcell of its colony with �&1(x) in its domain, with
Age=Age&1, and for each locally maintained field F, if Age is not in the
update interval of F (as defined in Subsection 11.4) then F=F &1;

(c) The domain, with constant values for the locally maintained
fields, continues to �&2(x);

(d) If x is a right outer cell then Age�(grow�end).

183Reliable Cellular Automata with Self-Organization

End-corrections in the left direction are defined similarly. Note that end-
correction does not create a germ cell. Each of the corrections above is
called mild if it can be achieved by only changing some locally maintained
fields different from Age and Addr. Internal corrections are called weak if
(c) is not required. Let us denote by

Int�corr(x)=1, End�corrj (x)=1

the fact that an internal correction is possible in x or that an end-correc-
tion in direction j is possible in x. The fact that a weak internal correction
is possible will be denoted by

Int�corr$(x)=1.

We need the notion of weak internal correction since cell x cannot check
Int�corr(�&1(x)) directly, only Int�corr$(�&1(x)).

rule Heal [
cond [

? Int�corr(x)=1 and
if Int�corr$(�&1(x))=1
then that correction would result in a weaker cell �&1(x)

! cond [
? the correction is mild
! carry it out
? Kind{Latent
! Die(p0)
?! correct using Animate(j, p0 ,...) for some j # [&1, 1]]

(1) ? _j # [&1, 1] End�corrj (x)=1 and Int�corr$(�& j (x))=0 and x
is no endcell in direction & j and End�corr& j (x)=0 and

Kind & j
j >

j=&1
Kind j

& j

! cond [
? the correction is mild
! carry it out
? Kind{Latent
! Die(p0)
?! correct using Animate(j, p0 ,...)]

? _j # [&1, 1] there is an end-correction in direction j in �j (x)
(then j is unique)

(2) ! Kindj .Heal :=Kind;
?! pfor j # [&1, 1] do Kindj .Heal :=Latent;
]]

184 Ga� cs

Part (1) uses the fact that our cells have a reach greater than 1, seeing their
second neighbors. If an internal correction will be carried out then of the
two neighbors of x, the one closer to the center of the colony is called the
mother of x while the one farther from the center is called the father.

rule Purge [
cond [

? x is isolated and is not an endcell of a near-end-correction
! Die(p0)
]]

Condition 12.10 (Animation).

(a) The only rules creating a live cell are Animate and Birth;

(b) Animate will be applied only by Heal or Grow�step, and it will
never create an exposed cell;

(c) The birth rule will be applied to cells with no live neighbors.

Condition 12.11 (Killing).

(a) The rule Die(p) is invoked always with p�p0 ;

(b) A cell can only be made vacant by the rule Arbitrate;

(c) Only the following rules can kill a cell: Heal, Arbitrate, Decay,
Purge;

(d) A non-exposed edge can be killed only if a neighbor has Kindj{
Latent. Setting Kindj{Latent happens only in the growth rules and in end-
healing.

12.6. Continuity

Our terminology turns out to be incestuous: a child cell can only be
created if it also becomes a sibling.

Lemma 12.12 (Parent). Suppose (x, u) is not in any extended
damage rectangle, and x becomes animated. Then there is a j # [&1, 1]
and t$ # [u&3Tv+, u&Tv�2] with the following properties.

(a) Some rule is applicable at time t$ invoking the animation of x
with mother x+ jB.

185Reliable Cellular Automata with Self-Organization

(b) x+ jB has a state at time t$ that makes it a sibling of (x, u). If
the internal correction case of the healing rule applies then (x& jB, t$) is a
father of (x, u);

(c) For any time t # [u&Tv, u], if x and its mother (resp. father) are
not in any extended damage rectangle during [t$, t] then they are siblings
at t;

(d) If x is not affected by the damage via neighbors at time u then
we can choose t$>u&Tv. Also, t$ can be chosen anywhere before u&Tv

if this is also before the time projection of the damage rectangle.

Proof. Since x is not affected immediately by damage, legality
implies that the change is the delayed result of the application of Animate.

1. Let us prove (a) and (b) first.

Suppose first that x is not affected by the damage via neighbors at
time u. Then at the observation time t$ corresponding to the switch (x, u),
we have the situation described by (b).

Suppose now that x is affected by the damage via neighbors at time u.
Then, according to Lemma 11.1, it is not affected via neighbors during
[u&3Tv, u&2Tv]. Let t be a switching time of x in this interval (in a
moment, we will see that t exists.) Then at the observation time t$ corre-
sponding to the switch (x, t), we have the situation described by (b).
Indeed, there are at most 4* steps of x between t and u; but the delay
parameter of Animate is at least p0 , so since (11.4) implies 4*<p0 , the
observation time t$ must have occurred during the wait.

2. Let us prove (c).

According to Condition 12.10 (Animation), the applied rule was either
Heal or Grow�step. In the healing case, the parents are frozen and non-
dying, therefore they will not change their age for a while yet in any way
but healing.

In the growth case, the age of the child is made equal to the age of the
mother at a not much earlier time t" since once animation has been
decided the assignment during animation happens fast (with delay p0).
Therefore the mother has time for at most one increase (with delay p1) of
age in [t"&, u], and this will not break the sibling relation. The mother
(and father) does not die since the rule Die would have announced this at
least p0 Tv time units earlier (see Condition 12.11) via the field Dying and
this would have turned off the animation or healing of x ((11.4) implies
p0 Tv>2Tv). K

186 Ga� cs

Lemma 12.13 (Glue). Suppose that the adjacent cells x, x+B
are siblings at time t0 , and the damage does not intersect the rectangle

(x, t0)+[&2B, 3B]_[&4Tv, Tv].

Suppose also that at the next moment that is a switching time of one of
them, this is a switching time of x and this breaks the sibling relation. Then
we have the following possibilities:

(1) a cut;

(2) x&B was not a sibling of x at the last observation time of x and
the switch kills x by Heal, Decay or Arbitrate.

Proof.

1. If a cell x breaks a sibling relation by a rule then one of the cases
listed in the statement of the lemma holds. This follows from the definition
of siblings, Conditions 11.4 (Address and Age), 12.11 (Killing) and the
healing rule.

We will show that if neither of the possibilities listed in statement of
the lemma holds then the cells remain siblings.

2. Suppose that x or x+B were animated at some time in
[t0&Tv, t0]; without loss of generality, suppose the latest such time was t1

and the cell was x+B.

Then x+B will be without an age change for at least p0Tv time units
which, due to the fact that (11.4) implies p0�4*, is longer than the whole
period under consideration. If x also underwent animation during this
interval then the same is true for it, hence the two cells remain siblings.
Suppose therefore that x has been live during [t0&Tv, t0]. The rule
Animate implies that x+B is not a germ unless x is one of the parents. If
x is a parent of x+B then Lemma 12.12 (Parent) implies that the two cells
remain siblings for at least Tv time units; after this, both cells have seen
each other as siblings and therefore Condition 11.4 (Address and Age)
shows that they remain siblings until a cut or a death.

Suppose that x is not a parent of x+B. If it has changed its age within
the last 4Tv time units then it will not change the age for a long time after,
and the two cells remain siblings. If it has not changed its age within this
time then for at least 2Tv time units before the observation time before the
animation, it already is a partner of the mother x+B. The rule Freeze
of Subsection 12.1 implies then that x is frozen which keeps x and x+B
siblings.

3. Suppose now that both cells have been live during [t0&Tv, t0].

187Reliable Cellular Automata with Self-Organization

If x changes its age within this time then it will not change its age soon
and therefore remains a sibling. Suppose therefore that x does not change
its age during this time. If x+B was a sibling all the time during
[t0&Tv, t0] then x sees that x+B is a sibling and will not break the
sibling relation. Suppose therefore that x+B changes its age within this
interval and becomes a sibling of x this way. Then x had ample time before
this age to observe that x+B is a partner. Therefore x is frozen and will
not change its age at the next switch. K

Remark 12.14. The lemma essentially also holds if we exchange
left for right and x+B for x&B, with the following modification: In this
case there is yet another possibility for x to break the sibling relation by
a rule: namely, when x is a doomed right end membercell of its colony
turning to Age=1. Indeed, case (1) of the definition of siblings says x is
not a sibling of its left neighbor anymore if this happens.

Lemma 12.15 (Exposing). An edge turns into an exposed one
by a rule only in the following cases:

(1) doomed right end membercell of its colony turning to Age=1;

(2) channel cell, Age=(idle�start);

(3) outer germ, Age=(germ�end)&2Q;

(4) growth, non-end, Age=(grow�end);

(5) germ cell, Age=(germ�grow�end), except when it is an outer
edge of an outer colony endcell.

Proof. Direct consequence of the definition of siblings and exposed
edges and Conditions 11.4 (Address and Age), 12.11 (Killing).

13. GAPS

The main lemma of this section is the Running Gap Lemma, saying
that if a sufficiently large gap is found in a colony then this gap will not
be closed, but will sweep through it, essentially eliminating a partial
colony, and serving as a preparation to the Attribution Lemma of the next
section. We start by collecting here some constants and inequalities, for
later reference. For clarity, we omit the notation w } x for integer part.
Recall that by definition, End&(grow�start) and End&(grow�end) are
constant. We use a constant K1 that can be computed from the program,
see (16.7) later. Recall the definition {i=(pi+1) Tv in (12.1).

188 Ga� cs

p0=4*+1,

p1=4*p0 , (13.1)

p2=2*p1 , (13.2)

(split�t)=14{1+Tv, (13.3)

Q>250>12(split�t)�{1 , (13.4)

(compute�start)=3Qp2 �p1=6Q*, (13.5)

(compute�time)=K1QCap�w, (13.6)

(idle�start)=(compute�start)+(compute�time), (13.7)

(synch�start�lb)=(idle�start)(1+*), (13.8)

U �((synch�start�lb)+Q) p1 , (13.9)

(end�period)=6Qp1 *, (13.10)

(grow�start)=End&(end�period)+4Q, (13.11)

(grow�end)=(grow�start)+6Q*, (13.12)

(crit)=3Q{1 , (13.13)

(germ�grow�end)=12Qp1*, (13.14)

(germ�end)=(germ�grow�end)+(end�period). (13.15)

Inequality (13.9) holds in view of (9.16), if R0 is large enough. Before,
(synch�start�lb) is a lower bound on the value of Age when End will
be computed. Similarly, (synch�start�lb)+(end�period) is a lower bound
on End.

13.1. Paths

Suppose that t<u, cell x is live at t and is not in any extended damage
rectangle during the interval [t, u], and there are no switching times in
[t+, u&]. Then we say that (x, t) is connected by a vertical link to (x, u).
If one end of a vertical link is not a switching time then the link is called
short. If cells x, x+B are siblings not in any extended damage rectangle at
time t or t& then the points (x, t), (x+B, t) are said to be connected by
a horizontal link (of size 1). Also the pair (x, t), (x+2B, t) is said to be
connected by a double horizontal link if there is a near-end-correction for
(x+B, t). If (y, t$) is, according to case (b) of Lemma 12.12 (Parent) a
mother or father of (x, u), we will say that the point (y, t$) is connected by

189Reliable Cellular Automata with Self-Organization

a parental (maternal or paternal) link to point (x, u). By this lemma (under
the appropriate damage-free condition), the parent survives until the birth
of the child, and therefore the parental link can be replaced by a horizontal
link and some vertical links. A link is a link of one of these kinds. A link
is steep or, equivalently, slow if it is a non-short vertical link or a parental
link. (Since time is the second coordinate, steepness of a line is synonymous
to slowness of the movement of a point along it.) A sequence (x0 , t0),...,
(xn , tn) with ti�ti+1 such that subsequent points are connected by links,
is called a path. A forward (n, k)-path is a path of length n whose number
of non-steep links is at most k. The adjective ``forward'' will be omitted
when it is obvious from the context. A (n, 0)-path is steep, or slow. A back-
ward path is the reversed reading of a forward path, backward in time.
Notice that a point (xi , ti) on a path can actually be dead, if it has just
died: indeed, it can be connected, e.g., to (xi+1 , t i+1) by a horizontal link
such that ti=ti+1 and x i , xi+1 are siblings at ti&.

For a path P=(x0 , t0),..., (xn , tn) and t # [t0 , tn], let

P(t)

be xi with the smallest i such that t # [ti , ti+1].
The following statement follows immediately from the definition of

paths.

Lemma 13.1. For the time projection d of an (n, k)-path we have

d �(n&k) Tv�2.

The following lemma says that if two paths cross then they intersect.

Lemma 13.2 (Crossing). Let (x1 , s1),..., (xm , sm) and (y1 , t1),...,
(yn , tn) be two paths with s1=t1 , sm=tn , x1� y1 , xm� yn . Then there are
i, j such that xi= yj and either tj # [si , si+1] or si # [t j , t j+1].

Proof. Parental links can always be replaced with horizontal and
vertical links. Horizontal links of size 2 jump over a latent cell only. So,
paths cannot jump across each other. K

According to the Parent Lemma, a steep path can be continued back-
ward in time until it hits some extended damage rectangle. Moreover, occa-
sionally we have a choice between continuing to the mother or to the
father. Let

(wake)={0+2Tv. (13.16)

190 Ga� cs

If [a0 , a1&]_[u0+, u1&] is an extended damage rectangle then let

u2=u0+(wake). (13.17)

The rectangle

[a0 , a1&]_[u0+, u2&] (13.18)

will be called the wake of the damage rectangle in question. The lemma
below says that unless a path started backward in the wake of a damage
rectangle, it can be diverted and continued back past a damage rectangle.

Lemma 13.3 (Ancestor). Let (x0 , t0) be a live point not in
(13.18), with x0 in [a0&QB�4, a0+QB�4&] and t0 in [u0 , u0+Tv*�2].

Then, there is a path going backward from (x0 , t0) and ending either
in u0 or in a birth. It is an (n, 2)-path for some n with at most 1 horizontal
link. In constructing the path backwards, we are free to choose between
maternal and paternal links at all times but possibly once, when moving
out of [a0 , a1]. These times, as well as the horizontal link, may only occur
during [u0+, u2&].

Proof. We call the path to be constructed a desired path. Let us start
constructing a steep path c0 ,..., cn with

ci=(xi , ti)

backward from (x0 , t0). If we get to u0 then we are done, otherwise, we
stop just before we would hit u1+Tv&, with ck being the last element.
Then tk<u1+2Tv and x=xk # [a0 , a1]. Indeed, if this is not so then we
could continue the path either by a vertical or by a parental link. The verti-
cal link would be shorter than than Tv, and the parental link would lead
to a damage-free cell, so either of them would be allowed.

Let us now go back on the path for i=k, k&1,... until the first i
(counting from k) such that either ci is a parent of ci&1 or xi=x can have
a horizontal link at some time during [t i , t i&1]. There will be such an i,
since otherwise the cell x would be isolated throughout [u1+2Tv, u2] with
no near-end-correction in a neighbor, and the rule Purge would kill it by
the time u2 .

Suppose that ci is not a parent: then let y0=x and let w0 be the
earliest time in [ti , ti&1] when x has a sibling y1{x. Let w1=w0 . Suppose
that ci is a mother: then it has a sibling y1{x. Let w1=ti in this case.
Suppose that ci is a father: then let y1{x be the corresponding mother
with w1=t i .

191Reliable Cellular Automata with Self-Organization

Let P1 be the part of the original path until c i&1 , and P2 the new part
ending in (y1 , w1). Let us build a steep path (yj , wj), j=1, 2,..., backwards
until either wj<u0 or yj=x and let P3 be the part of this path ending with
(yj&1 , wj&1). If wj<u0 then P1 , P1 , P3 combine to a desired path, suppose
therefore that wj�u0 , hence yj=x. Then (x, wj) is a parent of (yj&1 , wj&1),
hence by the Parent Lemma, x is a sibling of yj&1 at time tj&1 . By defini-
tion, if t is the first time after tk when x has a sibling then t�t i ; hence
wj&1<tk<u+2Tv. By the Parent Lemma, (x, u0&Tv) is also parent of
(wj&1 , tj&1) (by the same animation): choosing this as (yj , wj), we are
done. K

13.2. Running Gaps

The rule Decay attempts to achieve that if some ``relevant gap'' was
not closed in reasonable time then it becomes wider.

rule Decay [
cond [

? _j # [&1, 1]Xposed(j)
! Die(p1)
]]

Remark 13.4. Most killing will be done by this rule. The rule
Purge is important only when the damage erases a colony endcell and
creates an isolated cell, intersecting its former body. The decay rule (in this
simple form) would take too long to eliminate the new cell which could in
the meantime widen the gap (and make it unhealable).

Consider an interval G=[l+, r&] where 0<r&l is divisible by B.
Assume that if the wake of a damage rectangle with space projection
[a0 , a1&] intersects G then l<a0<a1<r. We call G a gap with right-age
n if n is the smallest number k such that every cell in G space-consistent
with r and not in the wake of a damage rectangle is a germ cell with age
<k. The right age is infinite if there is no such number k (these cases will
not be relevant). The size of G is r&l&B. If G is contained in the colony
of r then it is called an interior gap. As we see, G is assumed to be a gap
only in the set of cells that are space-consistent with r and are not young
germ cells. (It is probably not important that we exclude only cells space-
consistent with r.)

Suppose that in a time interval [v0 , v1], the gap G(t)=[l(t)+, r(t)&]
is defined for all t, in such a way that all cells r(t) are space-consistent with
each other, and for all t1 , t2 with |t2&t1 |�3Tv, we have r(t2)&l(t1)>B.
Then G(t) is called a (right) gap path, and the right age of the gap path is

192 Ga� cs

the maximum of the right ages of the gaps in it. By this definition, if a path
space-consistent with r(t) has the same time projection [v0 , v1] as the right
gap path G(t) and has no germ cells younger than the right age of the gap
path then it cannot cross G(t) since no parental link can jump through it.
Though the wake of a damage rectangle in G(t) may contain some cells
that are not young germ cells these do not live long enough to become
parents (due to the wait of animation) and therefore also cannot assist in
the jumping of a path.

The lemma below says that the Decay rule causes a large enough gap
to move right rather fast. The gap is assumed to be connected, via a series
of horizontal links, to a forward path. This excludes irregular and unimpor-
tant cases when the gap would have to travel through all kind of debris.

Lemma 13.5 (Running Gap). Let P1=(x0 , v0),..., (xn , vn) be a
forward path with at most one double horizontal link, let L, k be positive
integers with

L�3Q,

k<(synch�start�lb)+(end�period)&5Lp1*.

Assume the following:

(a) (xn , vn) is not a germ cell younger than <k+10L*p1 ;

(b) (y0 , v0) is to the left of (x0 , v0) in the same domain;

(c) if y0 is a left outer cell then path P1 is in the same colony;

(d) No damage rectangle affects [y0+, x0&]_[v0], even via
neighbors;

(e) (y0 , v0) is a left exposed edge (see Subsection 12.1);

(f) y0 has been the right end of an interior gap of right-age k and
size>5B during [v0&Tv, v0];

(g) vn&v0�2L{1 .

Then during [v0 , vn], a right gap path G(t)=[l(t)+, r(t)&] can be
defined, with r(v0)= y0 ,

(r(vn)& y0)�B�(vn&v0&(wake))�{1&4, (13.19)

r(t)� y0&B, and the right age of the gap path is <k+5L*p1 . If no
damage rectangle occurs on the whole interval during the time considered
then the right-hand side of (13.19) can be replaced with w(vn&v0)�{1 x .

193Reliable Cellular Automata with Self-Organization

File: 822J H29050 . By:XX . Date:14:02:01 . Time:15:33 LOP8M. V8.B. Page 01:01
Codes: 1695 Signs: 1063 . Length: 44 pic 2 pts, 186 mm

Fig. 16. Running Gap Lemma.

Before proving this lemma, let us prove a corollary saying that if P1

is long there is no large young gap next to its beginning (say, on the left).

Corollary 13.6 (Running Gap). Assume the conditions of the
Running Gap Lemma, with L=Q, and assume also that the path P1

remains in the colony of y0 . Then we have

vn&v0�Q{1 . (13.20)

Proof. It is easy to see that the length of the path is at most 5L*p1 .
By the definition of the gap path G(t) above, path P1 starts on its right.
Since age varies by at most 1 per link along a path (except for a double
link) and since (xn , vn) is not a germ cell younger than k+10L*p1 , no cell
on P1 is a germ cell with age <k+5L*p1 , while according to Lemma 13.5,
all cells in G(t) space-consistent with r(t) are germ cells with such age.
Therefore P1 never crosses the gap path from right to left. The inequality
(13.19) gives a lower bound on how fast r(t) moves right. Since P1 stays
in the colony of y0 ,

(vn&v0&(wake))�{1&3<Q&5, vn&v0<{1(Q&2)+(wake)<{1Q

(see (13.1) and (13.16) for the last inequality). K

194 Ga� cs

Proof of Lemma 13.5. Let r(v0)= y0 , and let l(v0) be the leftmost
cell such that the gap [l(v0)+, r(v0)&] has right-age �k.

1. Let t1>v0 . Assume that for all t�t1 , a gap path G(t) is defined
with the desired properties and in such a way that (r(t1), t1) is not a germ
cell younger than k+10Lp1* and is not in the wake of a damage rectangle.
Then r(t1) is an edge space-consistent with r(t0) that is either exposed or
is to become exposed in one step, in one of the cases of Lemma 12.15
(Exposing). This last case occurs only if there is a damage rectangle during
[v0 , t1].

Proof. Since (r(t1), t1) is not in the wake of a damage rectangle we
can build a backward (m, 2)-path

P2=((z0 , w0)=(r(t1), t1),..., (zm , wm))

according to the Ancestor Lemma. Lemma 13.1 and the bound (g) gives

m�2+2(vn&v0)�Tv�2+4Lp1*<5L*p1 .

The backward path P2 ends at time v0 . Indeed, if it ended in a birth then
(r(t1), t1) would be a germ cell younger than 5Lp1* contrary to the
assumption. P2 does not cross the gap since otherwise (r(t1), t1) would be
a germ cell younger than k+5L*p1+5L*p1 which was excluded. Therefore
defining x=P2(v0) we have x� y0 . Without loss of generality, we can sup-
pose x�x0 . Otherwise, Lemma 13.2 (Crossing) implies that path P2

crosses P1 and we can switch from P2 to P1 at the meeting point. Thus,
x is on the interval [y0 , x0], aligned with x0 .

Combine P2 and the horizontal path from (x, v0) to (y0 , v0) into a
single chain of links connecting siblings. This chain has at most 3Q
horizontal links from the left edge (y0 , v0) to (x, v0), and then at most
2+2(vn&v0)�Tv links on P2 , giving fewer than

3Q+2(vn&v0)�Tv+2

links. The assumption that the gap path satisfies the requirements of the
Lemma implies r(t)� y0&B, hence P2 is to the right of the left end of the
colony of y0 .

In the number of steps available, a protected left edge cannot occur on
such a path unless y0 is a left outer cell and the path leaves the colony of
y0 on the right. Indeed, suppose first that (y0 , v0) is a member or right
outer cell. For a path of ancestors starting from such a cell to turn into a
left outer cell this path would first have to walk right to participate in the
creation of a colony and then walk back through the growth process from
that colony, which is impossible due to (13.8).

195Reliable Cellular Automata with Self-Organization

Suppose now that (y0 , v0) is a (exposed) left outer cell. The age of
cells on the path is locally monotonically nondecreasing, except when it
crosses into another work period. Indeed, since the age of siblings is
required to be monotonically nondecreasing towards the originating
colony, it is nondecreasing on the horizontal part of the path; it is also
nondecreasing on the part P2 constructed by the Ancestor Lemma, except
on the horizontal link allowed by that lemma. Therefore the age of (r(t), t)
cannot be smaller by more than 1. If the age is not smaller at all then
(r(t), t) is also exposed. If decreasing the age by 1 makes it protected then
we must have one of the cases in Lemma 12.15.

Suppose that (y0 , v0) is a germ cell. Left germ cells inside a colony, as
well as member cells they can turn into on the path P2 are always exposed.
We should not rely on this asymmetry in the definition of ``exposed'' for
germs, however, since we want to apply the lemma also when changing left
to right. Let us assume therefore for a moment that left and right is inter-
changed in the definition of ``exposed'' for germs. Then a germ cell that is
a left edge is exposed to the left only if its age is �(germ�grow�end). In
this case, the same argument works as for left outer cells above.

2. Consider a time interval [f0 , f1], assume that the gap G(t) with
the desired properties was defined up to time f0 , where G(f0) has size >2B
and right-age �k. Assume that for t # [f0 , f1], no wake of a damage
rectangle intersects the area where we define the path further.

Then the gap path G(t) can be defined further in [f0 , f1] in such a
way that G(t) has right-age �k+2(t& f0)�Tv+1 and size

�r(f0)&l(f0)&B+(t& f0) B�(p2Tv)

with

(r(t)&r(f0))�B�w(t& f0)�{1 x&1.

Proof. Let us define G(t) as follows. Suppose that it was defined up
to time t1 and let t2 be the next time that is a switching time of either
l(t1)+B or r(t). We distinguish the following cases.

(1) t2 is a switch of l(t1)+B. If the switch is an animation resulting
from Grow creating a sibling of l(t1) then l(t2)=l(t1)+B, else l(t2)=l(t1).

(2) t2 is a switch of r(t). If r(t1) dies then r(t2) is the closest cell to
the right of r(t1) that is not a germ cell younger than k+2(t2& f0)�Tv+1
or k+10L*p1 , else r(t2)=r(t1).

(3) In all other cases, we leave G(t) unchanged.

196 Ga� cs

2.1. G(f1) has right-age �k+2(f1& f0)�Tv+1.

Proof. Let z1 be a live cell in G(f1) space-consistent with r(f1), and
let us build a sequence (z1 , w1), (z2 , w2),... with f1=w1�w2� } } } as
follows. Without loss of generality, assume that w1 is a switching time of z1 .
If z1 is live at w1& then z2=z1 and w2 is the previous switching time
of z1 . Otherwise, either (z1 , w1) is a newborn germ cell, in which case the
sequence ends at (z1 , w1), or it has a parent (x, u).

If x # G(u) then z2=x, w2=u. Let us show that otherwise, z1 was
created by the internal correction part of the healing rule. If x�l(u) then
it could not have created z1 by the growth rule since by the definition
of l(t), this would have increased l(t), bringing (z1 , w1) outside the gap. If
x�r(u) then it could not have animated z1 by the growth rule since r(u)
is an exposed edge. The end-correcting part of the rule Heal could not be
involved. Indeed, the left end in case could only be the left end of the right
neighbor colony of y0 . In this case, r(u) would be a member cell and hence
y0 would be a left outer cell. For that case, however, we assumed in condi-
tion (c) of the lemma that the path (hence also the gap path which is to
its left) stays in the colony of y0 . (This is the part of the Gap Lemma where
we use the fact that we upper-bound only the right-age, i.e., the age of cells
space-consistent with r(u): thus, the end-healing of some other colony
inconsistent with r(u) can be ignored.)

If the internal correction case of healing created z1 , let (z2 , w2) be the
father of (z1 , w1), this will be inside the gap. By the parent construction,
w2�w1&Tv and Age(z1 , w1)�Age(z2 , w2)+1. We see that the sequence
(zi , wi) steps back at least Tv�2 time units in every step and the age of
(zi , wi) can decrease by at most 1 in each such step. Since it can only end
in a birth or a germ cell in G(f0) this and (g) proves the age bound.

2.2. (a) Edge r(t) does not move left during [f0 , f1]. During the
same period, l(t) moves right at most once.

(b) For all n>0 with t= f0+n{0< f1 , we have r(t)�r(t1)+
(n&1) B.

Proof. Let us prove (a) first. By Property 2.1, the gap can contain
only latent and germ cells. The size of G(t) does not allow Heal to decrease
it: indeed, it follows just as in 2.1 above that end-healing cannot operate.
Since G(t) is a left gap, the rule Grow can decrease it only on the left. After
one such decrease, the size is still >B. The next application of Grow is
away by a waiting period of length p2Tv.

Let us prove (b). Since the conditions of 1 are satisfied, y=r(f0) is
an exposed left edge or is a cell whose age is just one step before the
applicability of one of the cases in Lemma 12.15 (Exposing). If y is exposed

197Reliable Cellular Automata with Self-Organization

then the rule Decay kills it within {1 time units. In the other case, nothing
prevents the age of y to increase within {1 time units. From now on, the
rule Decay applies.

To conclude, note that according to 2.2 and (13.2), every p2 Tv time
units, the left edge l(t) moves at most one cell width to the right but the
right edge r(t) moves at least two cell widths. Since the size started from
>2B, it will remain >B. This proves the lower bounds on the size of G(t)
and on r(t).

3. Let [a0 , a1&]_[u0+, u2&] be the wake of the damage rectangle
and assume that u0 # [v0 , vn]. Assume also that G(u0) has size >4B and
right-age �k at time u0 .

Then the gap path G(t) with the desired properties can be defined
for t # [u0+, u2&]; moreover, G(u2) has size >2B and right-age �k+
2(wake)�Tv+1.

We also have r(t)>r(u0)&2B for all t # [u0+, u2&].

Proof. Let k(t)=k+2(t&u0)�Tv+1.

3.1. Assume that the interval [a0 , a1] is closer to l(u0) than to r(u0).

Then r(t) will be defined just as in the damage-free case.

3.1.1. Let t # [u0+, u2&].

Then we set l(t) to be the first site from the left that, at time u0 , is
�l(u0) 6 a1 and is aligned with l(u0). This defines a gap G(t) of size >B
for this time interval. This gap will not decrease during [u0+, u2&] since
it is too large for Heal and the damage has insufficient time to trigger
Grow. So, the age bound reasoning of point 2.1 above applies and the
right-age of G(t) will be �k(t).

3.1.2. Let t=u2 and a0�l(u0)+B.

Then a1�l(u0)+2B, and we set l(u2) to be the greatest cell
�l(u0) 6 a1 and aligned with l(u0). Then l(u2)�l(u0)+2B, hence G(u2)
has size >2B. Again, the reasoning of point 2 above applies to show that
G(t) has age �k(t). If l(u2)>l(u0) then no growth animation could have
been pending in l(u2) from time before u0 and this completes the proof of
the claim in 3.

3.1.3. Let t=u2 and a0>l(u0)+B.

Then we define l(u2)=l(u0)+B. At most one cell can be added to
l(u0) by growth during [u0 , u2&]. Lemma 13.3 (Ancestor) shows that any
live cell in [a0 , a1&] can be traced back to a birth within G(t) or to a time

198 Ga� cs

in G(t) before u0 and therefore the same reasoning as for the other cases
gives that G(t) has right-age �k(t).

3.2. Assume now that [a0 , a1] is closer to r(u0) than to l(u0).

This case is similar to case (3.1), so we point out only the differences.
Now, the gap on the left of a0 may decrease by one during [u0+, u2&],
to size >0, if a growth step occurs on the left. For t=u2 , now the cases
we distinguish are:

3.2.1. Assume a1�r(u0).

Then a0�r(u0)&B. We set r(u2) to be the smallest cell �r(u0) 7 a0

and aligned with l(u0). Then r(u2)�r(u0)&B, hence G(u2) has size >2B,
even if a growth step occurred at l(t) during [u0+, u2&].

3.2.2. Now assume a1<r(u0).

Then we define r(u2)=r(u0). Since no growth could have occurred on
the right-hand side, by applying the earlier reasoning, we will find that G(t)
has right age �k(t).

Let us construct G(t) for t # [v0 , vn]. In the space-time rectangle con-
sidered, at most one damage rectangle occurs. Indeed, vn&v0�Tv*�2
follows from (g) and (13.10). Let f0=v0 and let f1 be the supremum of the
those t> f0 until which the damage-free construction in the proof of 2 is
applicable: thus, if there is no damage involved then f1=vn , else f1=u0 .
Applying this construction, we get to f1 with gap size >4B. Applying 2,
knowing there is no damage before, we find the age upper bound
k+2(t&v0)�Tv+1 and the lower bound w(t&v0)�{1 x on (r(t)& y0)�B. If
f1=u0�v0 then we apply the construction of 3 to get to f $0=vm 7 u2 .
Now, the gap has age upper bound k+2(t&v0)�Tv+2, and lower bound
(t&v0&(wake))�{1&2 on (r(t)& y0)�B. Let now f $0 take the role of f0 and
repeat the damage-free step to f $1=vn . Now, we have age upper bound
k+2(t&v0)�Tv+3 and lower bound (t&v0&(wake))�{1&4 on (r(t)& y0)�B.

K

14. ATTRIBUTION AND PROGRESS

14.1. Non-Damage Gaps Are Large

A right (as opposed to left, not as opposed to wrong) bad gap is a gap
of right-age �2(split�t)�Tv and size >5B. The Bad Gap Opening Lemma
says that if a left exposed edge persists too long (while possibly moving)
then a right bad gap develops on its left. This lemma will be used to prove

199Reliable Cellular Automata with Self-Organization

the Bad Gap Inference Lemma, saying that, under certain conditions, a left
exposed edge automatically has a right bad gap next to it.

Let us call two siblings strong if either they have been siblings for at
least 2Tv time units or one cell is a parent of the other. A cell is called, e.g.,
a weak left exposed edge if it has no strong left sibling and if it would be
a left exposed edge in case it had no left sibling. A sequence R1=(y0 , v0),...,
(ym , vm) of cell-time pairs will be called a left boundary path if it has the
following properties:

(a) yi is a weak left exposed edge during [ti+, ti+1&];

(b) cell yi&1 dies at time ti and is a strong sibling of yi= yi&1+B at
time ti&;

Lemma 14.1 (Bad Gap Opening). Let C be a colony and let
R1=(y0 , v0),..., (ym , vm) be a left boundary path in C. Assume that the
damage rectangle does not intersect [�i yi&B, �i yi+B]_[v0 , vm].
Then yi has at most p1+1 switching times during [vi , vi+1]. If m�7 then
at time vm&, there is a right bad gap on the left of R1(t). The same state-
ment holds if we interchange left and right.

Proof. Let us show that (yi , t) is a left exposed edge for t in
[vi+2Tv+, vi+1&2Tv&].

Indeed, yi can be a weak left exposed edge that is not a left exposed
edge only if it has a left sibling that is not strong. Now, if yi does not have
a left sibling and it gets one then it follows from Lemma 12.13 (Glue) (and
the exclusion of cut, since the edge does not become exposed) that the only
way to lose this sibling is if the sibling dies again, which it cannot do before
making at least p0 switches, becoming a strong sibling in the meantime.
From this, it is easy to see that yi can have a left sibling only during a time
interval adjacent to either vi or vi+1 . Since the sibling stays weak these time
intervals must be at most 2Tv long.

Due to the above observation, since y i is a left exposed edge after its
first complete work period following vi , either Purge or Decay will kill it
within the following p1 steps. In 7 repetitions of this, a gap of width 7B will
be created. During this time, by (13.2), at most one growth step can occur
on the left, leaving still a gap of size 6B. K

Lemma 14.2 (Bad Gap Inference). Let c0=(x0 , t0) be a left
exposed edge,

D=[x0&8B, x0+B],

I=[t0&(split�t)+Tv, t0]

200 Ga� cs

and let z0 be the starting cell of the colony C of (x0 , t0). Suppose that if
c0 is an outer cell then D & ([z0&2B, z0+QB&])_I is damage-free, else
D_I is damage-free. Then one of the following holds:

(1) There is a bad gap on the left of (x0 , t0) inside the colony of c0 ;

(2) There is a bad gap on the left of (x0 , t0), and a backward path
(xi , ti)0�i�n of length �7(p1+1) with the property that one of the path
cells, xi , is in the left neighbor colony. It is a weak left exposed edge during
[ti+, t i&1&]. Also, either it is an expanding germ cell closer than c0 to the
origin of expansion or it is closer than c0 to the originating colony.

(3) There is a backward path of length �7(p1+1) leading from c0

to a cell undergoing one of the changes listed in Lemma 12.5 (Exposing);

(4) There is a backward path of length �7(p1+1) leading from c0

to a protected left colony endcell, just being killed by a left neighbor cell
and exposing a right neighbor.

The same statement holds if we replace left with right.

Proof. Let us construct a backward path (xi , ti) made up of horizon-
tal and vertical links such that cell xi is a weak left exposed edge during
every nonempty time interval [ti+, ti&1&], and the backward path never
passes into the right neighbor colony. Suppose that (xi , ti) has already
been constructed.

(1) The construction stops in any of the following cases:

v the path has reached length 7(p1+1);

v the path moved 7 steps to the left;

v (xi , ti) belongs to the left neighbor colony;

v (xi , ti&) is not a weak left exposed edge;

(2) If x i has a switching time t$ immediately before ti such that (xi , t)
is a weak left exposed edge during [t$, ti] then let (xi+1 , t i+1)=(x i , t$).

(3) Otherwise, let t$ be the lower bound of times t such that (xi , t)
is a weak left exposed edge. If t$<t i then let (xi+1 , t i+1)=(x i , t$).

(4) Assume now that t$=ti . Then at time t i , cell xi became a weak
left exposed edge without taking an action: hence, it must have lost a
strong left sibling. (Animation does not produce any exposed edge, see
Condition 12.10 (Animation).) According to Lemma 12.13 (Glue), this can
only happen in one of the ways listed there. It is easy to check that of these,
only the killing of the strong left sibling produces an exposed edge in xi .
Each of the rules Heal, Decay and Arbitrate that could have killed xi&B

201Reliable Cellular Automata with Self-Organization

presupposes that this cell did not have a left sibling at the observation time
t" of xi&B; thus, it did not have a strong left sibling at time ti&. On the
other hand, as a strong left sibling of (xi , ti&), it has been alive for at least
2Tv time units. Let (xi+1 , ti+1)=(xi&B, t i). Such an i will be called a
right jump.

By the construction, each jump is surrounded by vertical links. For each
jump i, cells xi and xi+1 are strong siblings at time ti&. Let (xik

, tik
) for

i1< } } } <im be the endpoints of vertical links on the backward path with
the property that (ik , ik+1) is not a vertical link; let (xn , tn) be the last
point of the path. Let us number these points forward in time: (y0 , v0)=
(xn , tn), (y1 , v1)=(xim

, tim
), (y2 , v2)=(xim&1

, t im&1
), etc., creating a left

boundary path.
If the path has moved 7 cells to the left then we are done. If v0�

t0&7{1 then Lemma 14.1 (Bad Gap Opening) is applicable, and it shows
that there is a bad gap on the left of (x0 , t0). If the path has stopped for
some other reason then we have the following cases.

(1) (xn , tn) is a weak left exposed edge belonging to a neighbor
colony.

(2) (xn , tn&) is not a weak left exposed edge.

In case 1, the death of (xn , tn) must have created the weak left exposed cell
(xn&1 , tn&1) that was a left colony endcell. This is possible only if either
(xn , tn) is an expanding germ cell closer than c0 to the origin of expansion
or it is some other kind of cell in the originating colony of c0 . Continue the
construction of the backward path for another 7(p1+1) steps (it is easy to
see that now it will not be stopped earlier) and apply the Bad Gap Opening
Lemma, showing that the present lemma is true for this case.

In case 2 we have either one of the cases in Lemma 12.15 (Exposing),
or (xn , tn&) dies at time tn as a left, non-exposed edge. K

The following lemma shows that a colony always makes some kind of
progress in the absence of damage.

Lemma 14.3 (Small Progress). Let C be a colony with starting
cell z0 and t0<t1 . If it is covered by a domain whose originating colony
it is at time t then let E(t) be the maximal such domain. Suppose that no
damage rectangle intersects [z0&8B, z0+(Q+7)B] during [t0&(split�t),
t1] and E(t) exists during this time.

Then one of the following statements holds:

(1) The minimum value of Age in E(t) increases at least
(t1&t0&2(split�t))�{1&3 steps during [t0 , t1&] (the minimum must be

202 Ga� cs

defined ``locally,'' taking into account the possible crossing of work period
boundary).

(2) an exposed edge appears in E(t$) at some time t$ # [t0 , t1] and
moves towards decreasing E(t) either until it reaches the end of C or at
least by B(t1&t$)�{1&B.

Proof. If both endcells of E(t) are protected during [t0 , t1] then the
only thing preventing the increase of age in a protected edge, according to
Condition 11.4 (Address and Age), is when x is frozen. According to Con-
dition 12.3 (Freeze), this x can become frozen only when it has a non-dying
partner. But Lemma 14.2 (Bad Gap Inference) would be applicable to this
partner as an edge turned toward x and it is easy to verify that in the pre-
sent case, this lemma implies an impossibly large gap between the partners.
Therefore the minimum age of E(t) increases every {1 steps.

Suppose now, without loss of generality, that the right end of E(t) is
exposed at some time t$ # [t0 , t1]. Lemma 14.2 (Bad Gap Inference) implies
the existence of a bad gap on the right of E(t0) unless one of the cases (3)
or (4) occurs. If none of these cases occurs then Lemma 13.5 (Running
Gap) will widen the gap as predicted in (2).

1. Suppose that case (4) of the Bad Gap Inference Lemma occurs.

Thus, there is a backward path of length �7(p1+1) leading from c0

to a protected right colony endcell x, just being killed by a right neighbor
cell and exposing a left neighbor. There are only two ways this can happen.
One: when x is the endcell of a growth and is killed by the end-healing of
member cells of another colony. This case does not really occur. Indeed, let
y be the left exposed cell trying to do the end-healing. The Bad Gap
Inference lemma can be applied to y and would imply now, when none
of the distracting cases applies, the existence of a large gap between x and y.

The other case is when x is the endcell of a germ. Then the exposed
edge thus created will never become protected, and the Bad Gap Opening
lemma implies the creation of a bad and growing gap within (split�t) time
units.

2. Suppose that case (3) of the Bad Gap Inference Lemma occurs.

The cases in Lemma 12.15 fall into two categories. In all cases but
(4) and (5), Lemma 14.1 (Bad Gap Opening) applies to the development
forward in time from this event, showing that again, the exposed right edge
moves left, creating an unhealable gap.

203Reliable Cellular Automata with Self-Organization

In case (4), a non-end growth cell at Age=(grow�end) becomes
exposed. The edge may later disappear by healing, but only by end-healing.
Indeed, for internal healing a close partner would be needed but the Bad
Gap Inference Lemma would show (without the distracting other cases,
this time) that the partner cannot be close. In order to prevent a bad gap
from opening, the end-healing must succeed within (split�t) time units.
Therefore this kind of exposed edge will exist at most for a time interval of
length (split�t) on the right and for a similar interval on the left. The same
reasoning applies to case (5).

We found that in three intervals outside the possibly two exception
intervals, the minimum age of E(t) increases every {1 steps. K

14.2. Attribution

Lemma 14.4 (Cover). Let P1 be a backward path contained in
colony C, starting at time t0 , and passing through the nonempty time inter-
val I=[v1 , t0&Q{1]. There is a union A1 of three intervals of size (split�t)
such that we have one of the following cases, with c0=(P1(t0), t0).

(1) At all times v0 in I "A1 , the cell P1(v0) is in a domain that has
no exposed edges in C.

(2) There is a time v0 in I "A1 at which P1 can be redirected using
at most 2Q links, to reach the originating colony of c0 .

Proof. Let A0 be the set of elements t of I such that a damage rec-
tangle intersects C during [t&(split�t)+Tv, t+(split�t)]. Then A0 is
covered by an interval of size 2(split�t). At time v0 in I "A0 , assume the
domain of P1(v0) has exposed edges in C. If the colony is not an originat-
ing colony we can choose the edge to look towards the originating colony.
Indeed, if there is no exposed edge pointing in this direction then we can
redirect the path by a horizontal stretch to the originating colony, as in
case (2) of the lemma.

Without loss of generality, assume that our edge is a left edge y0 . The
conditions of the Lemma 14.2 (Bad Gap Inference) are satisfied for (y0 , v0)
as the cell (x0 , t0) in that lemma. Case (1) of the conclusion of the lemma
does not happen since it would satisfy the conditions of the Running Gap
Corollary for (y0 , v0): hence t0&v0�Q{1 would follow, contrary to the
definition of I. Case (2) implies case (2) of the present lemma and it is also
easy to see that then c0 is not a member cell.

As in the proof of Lemma 14.3 (Small Progress), we can show that
case (3) of the Bad Gap Inference Lemma does not occur. Consider case

204 Ga� cs

(3) of that lemma. As in the proof of the Small Progress Lemma, we can
conclude that cases other than (4) and (5) of Lemma 12.15 (Exposing) do
not occur. These remaining cases result again, in at most one additional
time interval J of size (split�t) to be excluded (not two, since the event in
question can occur at only one end of the colony C). Thus, let A1=
A0 _ J. K

If the Cover Lemma is applied with t0&v1�2Q{1 then the set I "A1

is not empty: indeed, see (13.4).

Remark 14.5. In case c0 is a germ cell with Age<(germ�end)
&2Q, further I is defined as I=[v1 , t0&3Q{1] then we can conclude
similarly that there is no weak left exposed edge even outside C. Indeed,
then the domain in question is of size �5Q and Lemma 13.5 (Running
Gap) would erase it in 5Q{1 time units.

Lemma 14.6 (Cover Ancestor). Suppose that C_[v0 , v1] is
not intersected by any damage rectangle, and at time v1 , colony C is
covered by a domain with no exposed edges, consisting of member cells or
of internal germ cells older than (germ�grow�end). Then, defining A0 as in
the proof of Lemma 14.4 (Cover), at all times u in [v0 , v1]"A0 , the colony
is covered by a domain that has no exposed edges.

Proof. We can follow the proof of the Cover Lemma for the special
case considered here: that the domain is only over C, consisting of member
cells or of internal germ cells. It is easy to verify that the applicable cases
of the Bad Gap Inference Lemma lead to a widening gap. K

We will say that cell (x0 , t0) is attributed to colony C if there is a path
P1 going back to time t0&5Q{1 and a union E of at most 3 intervals of
length (split�t) such that P1(t) # C for t in

I=[t0&4Q{1 , t0&3Q{1] (14.1)

and C is covered by a domain without exposed edges for all times in I "E.
In view of (13.4), this is the majority of times in I and therefore if (x0 , t0)
is attributed to colony C0 and (x1 , t0) is attributed to colony C1 then C0

and C1 either are disjoint or are the same.

Lemma 14.7 (Attribution). Assume that the live cell c0=
(x0 , t0) with colony C is not a germ and is not in the wake of a damage
rectangle. Then we have:

205Reliable Cellular Automata with Self-Organization

(a) It c0 is a member cell then it can be attributed to its own colony.

(b) If c0 is an outer cell then it can be attributed to its originating
colony.

(c) If c0 is an outer cell older than (grow�end)+2Q*p1 and not
adjacent to the originating colony, then it can be attributed to its own
colony.

Proof. Without loss of generality, assume that c0 is not to the left of
the center of its originating colony.

Let us build the path P1=(c0 , c1 ,...) with ci=(x i , t i) backward in
such a way that vertical, parental and horizontal links are chosen in this
order of preference. Horizontal links are chosen only in the case of the
application of Lemma 13.3 (Ancestor). Whenever we have a choice between
father and mother we choose the parent towards the center of the originat-
ing colony of c0 or towards the center of the current colony, as the con-
struction requries.

1. Assume that c0 is not an outer cell younger than (grow�end)
+2Q*p1 and one of the following holds:

(1) P1 does not leave C during [t0&2Q{1 , t0];

(2) c0 is not adjacent to its originating colony;

(3) [t0&(split�t), t0] is damage-free.

Then it can be attributed to its own colony.

Proof. Let us direct the path always towards the center of the
current colony. If the path did not leave C during [t0&2Q{1 , t0] one finds,
applying the Cover Lemma, some time v0 during this period when the
colony is covered by a single domain. At time v0 , we can extend the path
along horizontal links to the center of the colony C of c0 . Continuing back-
ward from there by the original method, the path will never reach the edges
of the colony, since the only way for it to move away from the center is by
one horizontal link near a damage rectangle, and this can only happen
once. Hence an application of the Cover Lemma finishes the proof.

If c0 is not adjacent to its originating colony then the backward path
constructed by our method never leaves C during [t0&2Q{1 , t0]. Indeed,
there is at most one horizontal link in the path during this time, and the
parental links do not move the path away from the center.

If neither of the above conditions holds but [t0&(split�t), t0] is
damage-free then c0 is an endcell of C during this time. It must have a
sibling in C sometime during this interval since otherwise it would be killed
by Decay. We can redirect the path into the sibling and continue from
there.

206 Ga� cs

2. If c0 is an outer cell then P1 can be redirected to the originating
colony during [t0&2Q{1 , t0] and then continued there without leaving it
again, as above.

Proof. Without loss of generality, suppose that c0 is a right outer
cell. The Cover Lemma implies that for J=[t0&2Q{1 , t0&Q{1], at all
times v0 in J "A1 with A1 as defined there, the cell P1(v0) is in a domain
that has no exposed edges in C. At any such time v0 the leftmost cell of C

belongs to the domain since otherwise the left edge of the domain would
be exposed. If it has a sibling in C&QB then let us then direct P1 to this
sibling. According to 1, P1 can be continued from here without having to
leave C&QB again.

If the left end has no left sibling then it must be already a member cell
in a new work period. Lemma 14.2 shows that during J "A1 there are no
cells to the right end of the domain that could prevent the increase of age
as in Condition 11.4 (Address and Age). Therefore according to Lemma 14.3
(Small Progress), the minimum age of cells in the domain keeps decreasing
along the backward path. But when it decreases by more than Q the left
edge of the colony is also an outer cell and has a left sibling in C&QB to
which the path can be redirected.

3. Assume that c0 is a member cell, the interval [t0&(split�time), t0]
is not damage-free and P1 leaves C during this time. Then c0 can still be
attributed to its own colony.

Proof. It follows from the cases already considered in 1, that we can
assume that the path leaves C on the left and c0 is the left endcell of C, that
before leaving C the path is vertical and the cells on it do not have any
right sibling. The path leaves C along a horizontal link (cp&1 , cp). Indeed,
suppose it is a parental link. The rule animating xp&1 could not be the
growth rule since c0 is a member cell and due to (13.10), the path is not
long enough to get the age from the expansion period to the end of the
work period. The healing rule does not act across colony boundaries. The
horizontal link across the colony boundary is created as in the proof of the
Lemma 13.3 (Ancestor), therefore the extended damage rectangle is near
the colony boundary, near time tp .

If cp is an outer cell then 2 implies that the path can be redirected
within the desired time to C. Let us show that cp is not member cell. It
could be one only if P1 crosses into C&QB at an age when C is a newly
created colony covered with outer cells and cp is in the originating colony.
Let i<p be such that ci&1 is still a member cell but ci is already an outer
cell. Then the transition from ci to ci&1 involves a transition from outer

207Reliable Cellular Automata with Self-Organization

to member status at the end of the work period. This cannnot happen,
however, under our assumption that ci has no right sibling. K

14.3. Progress

The lemma below says that under certain conditions, the age of a
colony increases.

Lemma 14.8 (Large Progress). Let c1=(x1 , v1) be of colony C

with starting cell z0 , within B of the center of C and not in the wake of any
damage rectangle. Assume that either c1 is a member or it is an internal
germ cell with Age>(germ�grow�end)+10Q*p1 . There is a v0 and a
forward path P1 in C_[v0 , v1] such that defining

xi =P1(vi), ci=(xi , vi), (14.2)

2=Age(c1)&Age(c0), (14.3)

we have v1&v0�5Q{1 , further either Q�2 or the path crosses a work
period boundary. Cell c0 is within distance B of the center of C, the latter
is not in the wake of any damage rectangle, and C is covered by a domain
at time v0 .

Proof. The proof is a repeated application of Lemma 14.3 (Small
Progress), with some case distinctions and delays due to damage. Let us
build the path P1 backward like in the proof of Lemma 14.7 (Attribution),
till

v0=v1&3Q{1 .

This path does not leave C. Indeed, it could only leave if there was a num-
ber of steps in which the path moves towards the edge of the colony. Each
such step but one must be a parental link. If the animation was via healing
then the healing would be an internal correction and the parent towards
the center would be chosen, so this is excluded in all cases but one. The
animation cannot be via growth since due to (13.10), the age of cells along
the path P1 cannot decrease enough for them to become growth cells.

Let E(t) be the maximal domain containing P1(t), and let m(t) be the
``local'' minimum value of age in E(t) (taking into account the possible
crossing of work period boundary). Let I=[v0 , v1&Q{1]. According to
the Cover Lemma, there is a set A1 coverable by 3 intervals of size (split�t)
such that for all t in I "A1 the colony C is covered by E(t). If v0 # A1 then
let us change v0 to a little larger value, so that v0 � A1 . Then P1 can be led
back to the center at time v0 . It remains to show 2>Q.

208 Ga� cs

Let us represent I "A1 as a union of at most 4 disjoint closed intervals
[si , f i] (i=1, 2,...). In each interval [si , f i], according to Lemma 14.3
(Small Progress), m(t) keeps increasing to

(t&si&2(split�t))�{1&3

until an exposed edge (say, a right edge) occurs at some time t1 . By the
same lemma, for t # [t1 , fi], this edge moves at least (t&t1)�{1&1 cell
widths till time t towards C unless it disappears earlier by reaching C. The
damage can stop this process and move right the end of E(t) by at most
2 cells. Therefore except for a union J1 of two time intervals of a total
length of (Q+2){1 accounting for right exposed edges and another excep-
tion set J2 accounting for left ones, part 1 of the Small Progress Lemma is
applicable.

The set I "(A1 _ J1 _ J2) breaks up into a disjoint union of at most 6
intervals [s$i , f $i]. The domain E(t) covers C and has no exposed edges
during these intervals, so m(t) increases in them as in the Small Progress
Lemma, and the total increase during I is at least

(v1&v0&(3Q+4){1&7(split�t))�{1&14>Q. (14.4)

15. HEALING

15.1. Healing a Gap

Given a set E of cells at time t, let us call a cell x$ a successor of E at
time t$>t if (x$, t$) is reachable by a forward path from some (x, t) for
some x in E.

Lemma 15.1 (Healing). Let [a0 , a1]_[u0+, u1&] be an
extended damage rectangle. Let E be a domain at time u0 with the property
that for each locally maintained field F such that the age of no cell of C is
in an update interval for F (let us call these fields ``relevant''), the latter is
constant over C at this time. Let C=[z0+iB: i=0,..., Q&1] be a colony
with which the addresses in E are aligned, with a0 # [z0 , z0+QB�2&].
Then the following holds.

(a) At time w0=u0+4{1 , some multidomain in [a0&QB�2,
a0+QB�2&] contains all successors of E & [a0&QB�4, a0+QB�4&]
from time u0 ;

(b) If E covers C at time u0 and all cells of C are member cells then
a domain covers C at time w0 and each relevant locally maintained field is
constant over C at this time.

209Reliable Cellular Automata with Self-Organization

Proof.

1. Let us prove (a).

The damage can change only a single cell x of E. If this cell is at an
end of E then there is nothing to prove. Otherwise, x&B and x+B are
also in E. Assume first that both x&B and x+B survive until w0 . Then we
have a case of internal correction; let us show that this correction succeeds.
If an internal correction of x&B is also possible before internal correction
starts in x (it cannot become possible after the correction of x started
because either x was dead or the correction of x starts with killing x) then
the reasoning for x can be applied to x&B. Suppose therefore that internal
correction of x&B is not possible. The correction begins by killing x (in
case it is not mild). Let us show that it succeeds by reanimating it. If x&B
is not a left edge any time before w0 then the internal correction of x will
succeed since the animation, needing a neighbor that is not isolated, can
use x&B. Similarly if x+B is not a right edge any time before w0 .

Let us show that if each of these cells is an edge pointing away from
x then one of them dies before w0 contrary to our assumption. Certainly,
one of them is an exposed edge, suppose that, e.g., x&B is a left exposed
edge at some time t in [u0 , w0&{1]. Lemma 14.2 (Bad Gap Inference)
implies that either there is a bad gap on the left of x&B or there is a back-
ward path of length �7(p1+1) leading from (x&B, t) to a cell in the
same colony that changes, at age (grow�end), from a protected to an
exposed left edge, or undergoes a planned kill. If there is a bad gap of the
indicated size then x&B is an isolated cell during [t, w0]. It is easy to see
that it is not an endcell of a near-end correction and therefore it will be
purged by the time w0 , contrary to the assumption that it stays alive. Sup-
pose now that a backward path of length �7(p1+1) leads from (x&B, t)
to a cell in the same colony that changes, at age (grow�end), from a
protected to an exposed left edge. Then it is easy to see that x+B (which
also is a right edge at some time before w0) is an exposed cell for which the
Bad Gap Inference Lemma really infers a bad gap on its right, resulting in
its purge.

Suppose now that, e.g., x&B dies before w0 . If there will be no cells
after w0 that can be traced back to E only by tracing them through the
left or x, then we are done. If there are at any time t>u0 , then they must
be connected by parental and horizontal links to x&B, therefore they form
a domain from x&B left. This domain can only be killed from the edges.
x&B cannot be the last element to be killed since then the whole domain
disappears by w0 . Therefore there must be a moment t$ when x&B and
x&2B are alive and x&B will be killed. The only rule accomplishing this
is Decay, if x&B is a right exposed edge and the gap in x cannot be healed.

210 Ga� cs

Since x+B is still there this could only happen if no internal correction is
possible in x, since otherwise this internal correction would have succeeded
already before the killing. The only obstacle to the internal correction is if
x+B has no right sibling and is not a right protected endcell.

It is easy to see using the Lemma 14.2 (Bad Gap Inference) that there
is no domain on the right of E with which the successor of E could merge
in the given time period. Also healing the gap caused by the death of x&B
is not possible since it was created due to the impossibility of healing to
begin with. Therefore the the whole domain containing x+B (and possibly
containing x and even x+2B if the latter arose by growth in the mean-
time) decays within further 3{1 time units.

2. Let us prove (b) now.

Suppose that E covers C at time u0 and all cells of C are member cells.
Let x be the cell changed by the damage. If it is not an endcell or next to
an endcell of C then (given the absence of planned kill) the change caused
by the damage will clearly be corrected by the rule Heal.

Suppose that x&B is a left endcell. Then the only obstacle to healing
x is if there is a competing internal correction in x&B that would create
a member cell in x&B. This cell could only belong to a colony C$ different
from C since x&B is an endcell in C. Since there is a correction in x&B
the cell x&2B must belong to C$. It is clearly exposed to the right at the
observation time of the correction (since the correction would create a
member cell, a protected edge is excluded). It must have been there as an
exposed cell for a significant time. Indeed, according to Lemma 14.6 (Cover
Ancestor), C has been full for a long time, the growth could not have
created x&2B during quite a long interval before u0 , and healing could not
have created it while x&B was an endcell of C. But it could not have been
there long since the Decay rule or the Purge rule would have killed it.

Suppose now that x is a left endcell. Then it is part of an end-correc-
tion. According to the healing rule, one possible obstacle to carrying out
the end-correction is that there is an internal correction in x+B. In this
case, x is the endcell of a near-end correction, therefore it will not be
purged, and the near-end correction will be carried out. All other possible
obstacles listed in the healing rule imply that x&B has been right exposed
cell for such a long time before u0 that it would have died.

If the healing rule tries to correct x it still must be proved that it suc-
ceeds in doing so. If x is not latent then first x will be made latent, then
line (2) of the rule Heal in Subsection 12.5 applies to cell x+B to make
a member cell in x by setting Kind&1 .Heal :=Member and triggering
thereby rule Animate of Subsection 12.4. We must show that the animation
of the latent x succeeds. The only obstacle to the animation would be an

211Reliable Cellular Automata with Self-Organization

end-healing of member cells of some other colony C$ from the left. But this
cannot happen since then the rightmost live cell of C$ must have been
exposed before the damage, and Lemma 14.2 (Bad Gap Inference) would
imply that it has a large gap on its right, excluding right end-healing.

If x is vacant then first it must be made latent by rule Create of
Subsection 12.3: for this, Lemma 12.8 (Creation) can be used. Again, no
obstacle will be posed by any opposite end-healing.

Adding the time upper bound in the Creation Lemma to {0 , we get the
upper bound 4{1 for the healing time. Due to to (13.1), this is still smaller
than the time needed for the decay rule to kill any cell exposed by the
damage. K

16. COMPUTATION AND LEGALIZATION

16.1. Coding and Decoding

16.1.1. Main Track and Redundancy Track

Assume that the transition function Trk has bandwidth w=wk as
defined in 2.2.1, and similary the simulated transition function Trk+1 has
bandwidth wk+1 .

The state of each small cell is partitioned using Buf =Inbuf _ Outbuf,
etc. Also, the field Info is partitioned into subfields Info.Main and
Info.Redun. Each of the fields of a small cell mentioned in the construction
of the previous sections, with the exception of Info.Main, will be part of
Buf. Let

P=Capk+1 �wk+1 .

Assume w.l.o.g. that this number is integer. We partition the state of the
represented cell into P fields called packets of size wk+1 . We also break up
the field Info.Main into fields Info.Maini , i=0,..., P&1 of equal size.
Assume without loss of generality that

Capk

wk
�

Capk+1

wk+1

�2
Capk

wk
. (16.1)

The first inequality implies that the width of track Info.Maini is less than
the bandwidth of a small cell. The second inequality will be used in deriv-
ing (16.7). (In case the first inequality was violated, we could distribute a
packet over several tracks whose width is the bandwidth, and otherwise the

212 Ga� cs

File: 822J H29069 . By:XX . Date:14:02:01 . Time:15:34 LOP8M. V8.B. Page 01:01
Codes: 1936 Signs: 1263 . Length: 44 pic 2 pts, 186 mm

Fig. 17. The Info and Hold tracks.

algorithm would be similar. In case the second inequality was violated, we
could put several packets onto each track whose width is the bandwidth,
and otherwise the algorithm would be similar.)

Let us also break up the track Info.Redun into locations (segments)
�Info.Reduni , i=0, 1,..., P&1. Our error-correcting code will distinguish,
similarly to Example 4.8, information symbols and error-check symbols.
Each packet of the represented state will be encoded separately. Track
Info.Maini will contain the information symbols, and location �Info.Reduni

contains the error-check bits of packet i. Let the location

�Infoi

denote the union of track Info.Maini and location �Info.Reduni . These
together form the error-correcting code of packet i. The first three packets
represent Inbuf *, Outbuf * and Pointer* (see Fig. 17).

We will work with a 12-error-correcting code

: (16.2)

as in Example 4.6, with Qk information symbols. Since that code can
correct errors in t symbols with just 2t error-check symbols, so for each i,
the location �Info.Reduni is only 24 cells long. When loc is a location
representing a string s then we will use the notation

:*(loc)=:*(s)

for the value decoded from it.

213Reliable Cellular Automata with Self-Organization

The computation result will be stored temporarily on the track Hold.
This has, similarly to Info, also subfields Main and Redun. This computa-
tion result corresponds to the output of Trwk+1. Recall that the latter con-
sists of 5 segments of size wk+1 . The first three segments determine the new
values of Inbuf *, Outbuf * and Pointer*. The fourth segment determines the
new value of a part of the cell state whose position is determined by the
fifth segment. The output of the simulating computation, on the Hold
track, will correspond to the first four of these values, in four subfields. The
fifth one will be kept in a locally maintained field called

Target�addr

which is supposed to have a constant value throughout the colony. Track
Hold.Redun is split into locations �Hold.Reduni for i=0,..., P&1, most of
which will be unused. For i=0, 1, 2 we define again �Holdi as the union
of the track Hold.Maini and �Hold.Reduni , similarly to how �Infoi was
defined. The redundancy bits for Hold.Main3 will be put, however, not into
�Hold.Redun3 but into �Hold.Redunn where n=Target�addr (here, n has
the same meaning as in 2.2.1). Correspondingly, we define

�Hold3=Hold.Main3 _ �Hold.Redunn .

16.1.2. The Code of the Amplifier

Recall (13.13). If .*(')(y, t) � Bad then let us define

'*(y, t)=.*(y, t)=Vac

unless there is a time v1 in [t&(crit), t] such that the colony C(y) is
covered with member cells belonging to the same work period at time v1

and is not intersected by the extended damage rectangle at this time. In
case there is such a time v1 let t* be the last time before t with this property
that is also the switching time of a small cell (just to make sure there is
such a last time). Let

s='(C(y), t*).Info

(the meaning of this notation should be clear). If s contains at most 2
errors then (see (16.2))

'*(y, t)=:*(s)

else it is Vac. The look-back to an earlier time in the definition avoids some
oscillation between the different states assigned to the large cell that could
occur as the result of damage and asynchronous updating.

214 Ga� cs

The encoding .
*

takes the state of a cell, applies :
*

and copies the
result to Info track of a colony. The other parts of the colony are set in
such a way as they are to be found at the beginning of a work period. The
encoding .

**
is like .

*
except that all tracks but Info will be filled with

the don't care symbol V.

16.1.3. Coding and Decoding Rules

Let

Vacant�str

be a string representing a vacant state in our code. Let

Code�size(k)=WR0 �R1(k)X (16.3)

where R0 and R1(k) were defined in 9.1.2 and 9.1.3. Let Decode�prog be a
program for the medium Univ such that location �Decode�output on track
Cpt.Output after applying

Univ(Decode�prog ? S; Q, 2Q)

contains :*(S) (see (16.2)) if :
*

(:*(S)) differs from S in at most 12 sym-
bols: otherwise, it contains Vacant�str. The decoding rule takes a string
from location loc1 , decodes it and copies the result to location loc2 . The
rule Write was described in Subsection 7.4.

rule Decode(loc1 , loc2) [
Cpt.Input :=V;
Write(Decode�prog, �Prog);
Copy(0, loc1 , �Decode�arg);
apply the rule Univ 2Q times to Cpt;
Copy(0, �Decode�output, loc2);
]

(Recall the assumption made in 7.2.1 that Univ is commutative, so we do
not have to worry about the order of execution in different cells.) The rule

Encode(loc1 , loc2)

performs encoding. The locations loci in the encoding and decoding rules
will be allowed to be given indirectly, as explained in Remark 7.10.

215Reliable Cellular Automata with Self-Organization

16.2. Refreshing

In each rule of the present section, the operation

Maj
2

i=0

si

when applied to strings s0 , s1 , s2 is the result of taking the bitwise majority
of these three strings.

We will have a general type of subrule

Check0(prop, F(I), X1 , X2 ,...)

checking some global property of some parameters X1 , X2 ,... each of which
is either an explicit string or a location. Here, prop is some program for the
universal computing medium such that after we run the rule of that
medium for Q steps the bit b representing the outcome of the check will be
broadcast into field F of every cell of interval I. We will also need an error-
checked version of Check0 which uses some fields Vote i for i=0, 1, 2:

subrule Check1(prop, F(I), X1 , X2 ,...) [
for i # [0, 1, 2] do [

(1) Check0(prop, Votei (I), X1 , X2 ,...)]
cond [

? Addr # I
! F :=Maj2

i=0 Vote i

]]

The subrule

Check0(nearly�equal, F(I), loc1 , loc2 , d)

checks whether the strings in below locations loc1 and loc2 differ in at most
d code symbols. The subrule Refresh attempts to clean the information on
the Info and Hold tracks by decoding and re-encoding it. It also attempts
to make sure that these tracks represent at least something, even if this is
only the vacant state.

Rule Update�loc�maint updates the locally maintained fields

Doomed, Growingj (j # [&1, 1]).

(It need not update the fields Control0.1 j to be introduced later.) Subrule

Check0(recheck�1, F(I), G, d) (16.4)

216 Ga� cs

checks whether track G is covered with 1's with possibly d cells as excep-
tions. As usual, the argument F means F([0, Q&1]). The rule uses some
additional locations and fields: �Decoded0 , �Encodedn , Ck�resn for
n=0, 1, 2.

subrule Refresh [
Ck�res :=1;
for i=0 to P&1 do [

for n=0 to 2 do [
Decode(�Infoi , �Decoded0);
Encode(�Decoded0 , �Encodedn);
Check0(nearly�equal, Ck�resn , �Encodedn , �Infoi , 8);
Idle Q steps]

�Encoded :=Maj2
n=0 �Encodedn ;

Ck�res :=Ck�res 7 Maj2
n=0 Ck�resn ;

Copy(�Encoded, �Infoi);
Idle Q steps]

(1) Check1(recheck�1, Ck�res, Ck�res, 2);
cond [

? Ck�res=0
! Write(Vacant�str, �Info)]

Repeat the whole procedure with �Hold in place of �Info,
``mutatus mutandis.''
]

Let us say that a string s of symbols that can be the argument of a cer-
tain error-correcting decoding has d errors if, when applying the decoding
and encoding to it, the result differs from s in d symbols.

Lemma 16.1 (Refresh). Assume that we have a full colony in
which all cells have ages before the starting point of Refresh. Then we have:

(a) At the end of Refresh, for all i, locations �Info i , have at most 4
errors;

(b) Suppose that at the beginning of Refresh, for all i, locations
�Infoi , have at most 4 errors. Then during the whole Refresh, the value
:*(�Infoi) does not change and �Infoi has at most 8 errors.

The same statements hold for location �Hold.

Proof. We perform the analysis only for �Info.

1. For any i, the ``immediate'' effect of the damage can affect at most
4 symbols of �Infoi .

217Reliable Cellular Automata with Self-Organization

Proof. The damage rectangle can have immediate effect in the cell
where it happens, and its healing can change possibly one more cell next
to it. If the affected cells happens to contain the symbols from �Reduni then
this can affect two information symbols and two error-check symbols.

2. Assume that the damage rectangle occurs before point (1) of the
rule.

Let us look at the damage-free operations in Check1 after (1). The first
such operation turns Ck�res into all 0 or all 1. If Ck�res=0 then the last
step writes Vacant�str into �Info, and thus the latter will have no errors.

Suppose therefore that Ck�res=1. Then before Check1 , we have
Ck�res=1 in all but two cells. Let us look at any cell x not affected
immediately by damage (the large majority is such). Since the majority step
computing Ck�res is correct in x, for all i there must have been two values
of n for which Check0 wrote the value 1 into Ck�resn(x). For at least one
of these n, say n1 , the computing period (i, n1) is damage-free. That period
wrote an error-free string into �Encodedn1

, and also determined that this
string does not differ from �Infoi by more than 8 symbols. There is another
damage-free period (i, n2). Its �Infoi could have been different at its begin-
ning (if damage occurred between the two periods), though according to 1
by not more than 4 symbols. Therefore, since our code corrects 12 errors,
we have �Encodedn1

=�Encodedn2
. Except for the immediate effect of new

damage, this is going to be the new value of �Info i , therefore there can be
at most these 4 new errors at the end of Refresh.

Suppose that at the beginning, each �Infoi has at most 4 errors. By 1,
the damage rectangle affects at most 4 cells of �Infoi immediately. There-
fore during the whole Refresh, the value :*(�Info i) does not change and
�Infoi has at most 8 errors.

3. Assume that the damage rectangle occurs on line (1).

Then the damage did not occur before and therefore the track
Check�res contains either all 0's or all 1's.

Suppose the damage has occurred before line (1) of rule Check1 , in
iteration n of that rule. Then only Voten(I) will be affected, and possibly
two more cells, the cell where the damage occurred and a cell next to it due
to healing. In the 2 other iterations, the track Check�res still contains
either all 0's or all 1's with these exceptions, and the result of these 2 itera-
tions is the same as it was without the damage in the third iteration. The
majority vote brings out the same result, except for possibly 2 immediately
affected cells.

218 Ga� cs

If the damage occurs after line (1), in rule Check1 , i.e., in the last step
of the rule, then again only the cells immediately affected will not have the
correct result. If the damage occurs after line (1) in rule Refresh then again,
this being a one-step action, only the cells immediately affected by the
damage would show up as errors. K

16.3. Computation Rules

After retrieval from neighbor colonies (to be discussed later), the
string returned from neighbor m will be in some location

�Retrievedm .

These strings are inputs to the simulated transition function but still in
encoded form. After decoding, the result will appear in �Decodedm .

16.3.1. Evaluation

As seen in (2.6), only the field Buf * of the neighbors is found in
�Retrievedm for m{0. For m=0, the location �Infoa is also needed, where
a is determined by Pointer*, which according to 16.1.1 is found in �Info2 .
Thus, first we broadcast this number a into a locally maintained field

Source�addr

of each cell of the colony, and then use indirect copying as in Remark 7.10
to copy �Infoa into the appropriate part of �Retrieved0 .

Then, the subrule Eval finds the intended output of Tr (w)
k+1 , as defined

in 2.2.1, using the universal computation, as in Decode above. Here are the
details.

We are proving Lemma 9.4 (Amplifier), so what is given is an amplifier
frame Frame, and the number k, and we are building the transition function
of the medium Mk . Assume that Frame is described in a string

Param2=Frame,

the parameter k is described in a string

Param1=k,

and the program we are just writing is Param0 . First Eval computes Tr (w)
k+1 .

It uses several new locations, some of which were introduced in 7.4.3:

219Reliable Cellular Automata with Self-Organization

�Interpr, �Parami for Parami , �Argm . The result will be deposited in
�Sim�outputi for i=1, 2.

Cpt.Input :=V; Write(Interpr, �Interpr);
Write(Param0 , �Param0);
Write(Param1+1, �Param1);
Write(Param2 , �Param2);
for m # Nb�ind do [

Copy(0, �Decodedm , �Argm)]
apply Q times the rule Univ to Cpt
The result is in �Sim�output1 .
Copy(0, �Sim�output1 , �Sim�output2)

As seen in (2.8), in the output string of Tr (w)
k+1 , only the first segment of size

wk+1 (corresponding to field Inbuf *) depends on the neighbors. To make
sure that really this is the case, the above sequence of operations will in fact
be performed twice, with the following differences.

v The first time, for all m{0, the string written in �Argm will not be
a copy of �Retrievedm but simply the corresponding part of Vacant�str.
Thus, the result does not depend on retrieval from neighbor colonies;

v The second time, only field Inbuf * of �Sim�output1 will be copied
into the appropriate part of �Sim�output2 .

According to 9.1.1, the complete transition function is combined from
Sim�trans and Rd�trans. To make sure this is the case, we recompute
Rd�transk+1 and perform the combination. Thus, now the rule Eval finds
out from �Sim�output2 whether the new big cell is going to be vacant. If
not then Rd�transk+1 is computed somewhat similarly to Sim�transk+1

above. The main difference is in what we copy into Param0 . According to
the complexity upper bounds in Subsection 9.1, the sequence Rd�transi

of functions is uniformly simple. Therefore Frame contains a program
Rd�trans�prog computing Rd�transk+1 on the universal medium Univ
from k+1 and its arguments in time R0 &Sk+1& and space R0 &Sk+1&. We
will therefore copy Rd�trans�prog into �Param0 . The result will be stored
in �Rd�output2 .

Finally, we combine �Sim�output2 and �Rd�output2 as required in
9.1.1, into a location �Eval�output. In accordance with (2.7), this location
can be broken up into segments �Eval�outputi for i=0, 1, 2, 3, 4, of size
wk+1 . Locations �Eval�outputi for i=0, 1, 2 are supposed to be the first
three packets of the new big cell state. �Eval�output3 is also supposed to
be the new value, to replace some packet Info.Mainn of the new cell state,
where n=�Eval�output4 . To use this information, the number n will be
broadcast into a field Target�addr of each cell.

220 Ga� cs

Remark 16.2. It seems wasteful to compute Rd�transk+1 twice:
once as part of Trk+1 and once separately. To avoid this, in the first com-
putation we can replace Rd�trans�prog with a trivial program that does
not do anything.

This ends the definition of the rule Eval.

16.3.2. The Computation Rule

In the rule Compute, the evaluation process will be repeated 3 times:
in repetition n, we code �Eval�output onto track Hold�voten , and finally
Hold will be obtained by majority vote from Hold�voten (n=0, 1, 2).

In the rule Randomize, the Rand bit of the first cell of the colony is
taken and an :

*
-code of it is placed into the appropriate location on the

Hold track. This is done only once, without any attempt of error-correction.
Rule Update�loc�maint will be discussed below.

subrule Compute [
Refresh;
for n=0 to 2 do [

for m # Nb�ind do [
Decode(�Retrievedm , �Decodedm);]

Eval;
for i=0, 1, 2, 3 do [

Encode(�Eval�outputi , �Holdi);
For i=3, use indirect copying with Target�addr=�Eval�out-
put4 .]

Hold�voten=Hold;
Target�addrn :=Target�addr;]

Hold :=Maj2
n=0 Hold�voten ;

Target�addr :=Maj2
n=0 Target�addrn ;

Randomize;
Refresh;
Update�loc�maint
]

16.4. Finishing the Work Period

The present subsection is devoted to achieving good upper and lower
bounds on the length of the colony work period, i.e., on Tv

k+1 and Tvk+1

in terms of Tv
k and Tvk . Though it seems likely that these bounds can be

proven if each cell of the colony simply runs until the same maximum age
Uk&1, we did not find such a proof. Therefore we introduce some special
rules.

221Reliable Cellular Automata with Self-Organization

The March rule updates the age of a cell only when its neighbors allow
it, and this is what makes the time estimates difficult. We will therefore
define a different rule, March1 , which allows updating a different field,
Age1 , independently of any neighbors. The idea is to end the work period
when a certain cell reaches Age1=U, since then the (multiplicative) uncer-
tainty in the length of the colony work period will not be much greater
than the uncertainty in the length of the individual cell dwell period. We
will use the Age1 of more than one cell, for robustness, but then we will
need to reach a consensus among these about when the end comes. To
leave clearly enough time for the consensus computation, and to make sure
the work period ends in a coordinated way, what will be determined by
consensus is some future value End of Age when the work period will end.

16.4.1. Finding the Work Period End

We will also use the auxiliary field

End0 # [0, U&1].

At the beginning of the work period, we start with Age1=0, End=End0=
U&1. (These values are extremely large for End, End0 .) Recall the defini-
tion of (end�period) in (13.10). The field End0 is required to have the
property

End0=U&1 or End0�Age+(end�period) (16.5)

which will be enforced by a trivial rule. The update rule of Age1 is trivial.

rule March1 [
cond [

? Age1<U&1
! Age1 :=p0

Age1+ p0

?! cond [
? End0=U&1
! End0 :=p0

(U&1) 7 (Age+(end�period))
]]]

Thus, each cell updates its Age1 independently of all other cells, and the
delays are also counted in. When the upper bound U&1 of Age1 is reached
each cell puts its estimate of the end of the work period into End0 . The
subrule Find�end will last at most

(synch�time)=16Q (16.6)

222 Ga� cs

steps and will be run every 4(synch�time) steps after Age>(synch�
start�lb) (see (13.8)). It uses votes Endi # [0, U&1] (i=1, 2, 3, 4) to
achieve consensus of the End0 values and to store it in End. The subrule

Check0(synch�consensus, End�legal, End4)

checks whether there is a c such that End4(x)=c for all but 3 of the cells
x in the colony.

subrule Find�end [
for i # [1, 2, 3] do [

cond [
(1) ? There is a c<U&1 such that End=c

for all but 2 cells in the colony
! Endi :=p1

c
(2) ? All but Q�4 cells have End0<U&1

! Endi :=p1
the maximum of the Q�2 smallest values of End0 in

the colony.;]];
cond [

? There are two equal values among [Endi : i # [1, 2, 3]]
! End4 :=p1

Maj3
i=1 End i];

Check1(synch�consensus, End�legal, End4)
cond [

? End�legal=1
! End :=End4

]]

16.4.2. Finish

At Age=End for non-germ cells and Age=(germ�end) for germ cells,
a final computation takes place in the rule Finish. The information from the
Hold track will be copied into the corresponding locations on the Info
track. This is done in accordance with (2.7): locations �Holdi for i=0, 1, 2
go to �Infoi . On the other hand, location �Hold3 goes to �Infon where
n=Target�addr. Still, due to the positioning done earlier, the whole opera-
tion involves only copying within each cell and takes therefore only a single
step. In particular, Outbuf * remains unchanged until the last step.

In the same step, addresses of growth cells will be reduced mod Q.
Outer cells and inner germ cells turn into members, outer germ cells turn
latent. End, End0 , Age, Age1 become 0.

16.4.3. Updating the Locally Maintained Fields

The rule

Broadcast(loc, F(I))

223Reliable Cellular Automata with Self-Organization

takes the information found in location loc and writes it into the F field of
every cell in interval I. The rule Check0(Check�vacant, F(I), loc) checks
whether the string represented in loc is Vac*. Let �Creatingj be the known
location of the field Creating j* of the represented cell inside �Decoded0 after
decoding. The value in this represented field will be broadcast reliably to
the track Growingj .

subrule Update�loc�maint [
for n=0 to 2 do [

Decode(�Hold, �Decoded0);
Check0(Check�vacant, Voten , �Decoded0)]

Doomed :=Maj2
n=0 Voten

for j # [&1, 1] do [
for n=0 to 2 do [

Decode(�Info, �Decoded0);
Broadcast(�Creatingj , Voten);]

Growingj :=Maj2
n=0 Voten

]]

Remark 16.3. Defining the rules this way wastes many operations
since we do not extract all information from its decoded form at once but
rather decode repeatedly. But it is easier to follow the analysis in this form.

Lemma 16.4. Assume that we have a full colony in which all cells
have ages before a starting point of Update�loc�maint. Then at the end of
this rule we have the same conditions as at the end of Refresh, and in addi-
tion the following:

(a) For all but at most 2 cells, the locally maintained fields Doomed
and Growingj have constant values in the colony;

(b) We have Doomed=1 almost everywhere iff �Hold represents a
vacant state;

(c) For j # [&1, 1], for almost all cells in the colony, Growingj is
equal to Creating j* of the cell state represented by the colony.

Proof. The proof is similar to, only simpler than the proof of
Lemma 16.1: simpler, since at the starting point of Update�loc�maint, we
can already assume that the conditions asserted by that lemma hold. K

By choosing Q sufficiently large (R0 times the bandwidth), the time
complexity of each of the Univ computations can be bounded by some

224 Ga� cs

constant times Q and therefore the total number of steps taken by Compute
can be estimated as

K0QP=K0 Q
Capk+1

wk+1

�2K0 Q
Capk

wk
(16.7)

where K0 is some absolute constant, which is consistent with (13.6).

16.5. Legality

Let us prove parts (c) and (d) of Condition 8.8 (Computation
Property) for big cells.

Lemma 16.5 (Legality). Assume that, for some rational number a,
Damage* does not intersect [x]_[a&Tv*�2+, a+2Tv*].

(a) If _1 , _2 is defined in the interval [a+, a+2Tv*] Then

legalk+1('*(x, _2&), '*(x, _2))=1 (16.8)

and Tv*�_2&_1�Tv*.

(b) If _0 is defined then (16.8) holds for _0 in place of _2 .

Proof. The discussion in Subsection 11.1 has shown that '*(x, t) �

Damage* iff the damage can be covered by a single damage rectangle
in (x, t)+V$ where V$ is defined in (11.1). The space projection of V$ is
at least 1.5QB and the time projection is at least Tv*�2. Thus, our assump-
tion implies that during every time interval of size Tv*�2 in [a&Tv*�2,
a+2Tv*], the interval [x&0.25QB, x+1.25QB] is intersected by at most
one damage rectangle.

Consider a time v2 such that '*(x, v2){Vac. If _0 is defined then let
v2=_0 , while if _2 is defined then let it be some time very close from below
to _2 .

According to 16.1.2, there is a time v1 in [v2&(crit), v2] such that the
colony C is covered with member cells belonging to the same work period
at time v1 and is not intersected by the extended damage rectangle at this
time. Lemma 14.8 (Large Progress) says that, by setting u1=v1 , there is a
time u0 # [u1&5Q{1 , u1], and a path P1 in C_[u0 , u1] with di=(P1(ui), ui)
within distance B of the center of C such that C_[u0] is not in the wake
of a damage rectangle, is covered by a domain, and Q�Age(d1)&Age(d0).
If d0 is a member cell let us apply the Large Progress Lemma (backward)

225Reliable Cellular Automata with Self-Organization

repeatedly until either the path crosses a work period boundary, or the age
along the path decreases by

L=6(synch�time)+(end�period).

Suppose the cell we arrived at is not a member cell and has Age�End&Q.
Then we perform one more repetition, but stop along the path as soon as
the age decreases below End&Q. Lemma 14.6 (Cover Ancestor) shows that
we can stop at a time when the colony is covered by a domain. Let us now
denote by d0=(y0 , u0) the cell at which we arrive this way.

1. Assume that d0 is an outer cell.

Then we have

Age(d1)&Age(d0)�L+Q (16.9)

and at time u0 , the whole colony is covered by outer cells. Lemma 14.7
(Attribution) shows that d0 can be attributed to its own colony and that
this colony could not have been occupied by member cells for at least (crit)
time units before u0 . Therefore '*(x, u0)=Vac.

In this case we have v2=_0 . The outer cells at time u0 encode a latent
cell of medium M*. Therefore eventually, when all outer cells turn into
member cells, the new colony will encode a latent cell. Now, a vacant-to-
latent transition is legal by Condition 11.3.

The reasoning is analogous in case d0 is a germ cell. Assume now that
d0 is a member cell in the same work period as c1 : then Age(d1)&Age(d0)
�L. Then we have the case when _1 , _2 are defined.

2. The Large Progress Lemma can extend the path repeatedly until
we arrive at a cell c0=(x0 , v0) in the same work period, with

v0>_1 ,

Age(c0)�2Q, (16.10)

v1&v0�UTv+5{1L.

Proof. One can find a time t1 in [u0 , v1] such that denoting e1=
(P1(t1), t1) we have

Age(e1)�Age(d0)+6(synch�time)

and there is a complete damage-free execution of Find�end during
[Age(d0), Age(e1)].

226 Ga� cs

2.1. This execution of Find�end finds more than Q�4 cells in C with
End0=U&1.

Assume that this is not true. Then this execution of Find�end sets the
common value of End to a value that was �End0(y, t) for one of the cells
y at the time t when it examined y. By (16.5), then End�Age(y, t)+
(end�period). It is easy to see that subsequent executions of Find�end do
not change this value of End (except for the spot of damage, which will be
corrected). Therefore the work period will have to end at an age before
Age(e1)+(end�period) which is not possible given our definition of e1 ,
since we came back L steps within the work period to Age(d0) and went
forward at most 6(synch�time) steps.

Let us continue applying the Large Progress Lemma from d1 and
extending the path backward from d0 until a cell c0=(x0 , v0) with Q<
Age(x0)�2Q or v0=_1 , whichever comes first. Look at the cells y which
were found by the above-mentioned run of Find�end at some time t to have
End0(y, t)=U&1 and hence Age1(y, t)<U&1. There are so many of
them that some of them will be damage-free during the whole work period.
Take one such cell y. Rule March1 keeps increasing Age1(y) between times
v0 and t, hence t&v0�UTv, and

v1&t�v1&u0�UTv+5{1 L.

Let us show that Age(c0)>2Q is not possible. Indeed, this would mean
v0=_1 . Then the big cell y would go through a switch of a state in _1 but
our backward path has never changed a colony work period.

3. Under the assumptions, the switch in _2 is legal.

Proof. Let us follow the development of the colony C(x), starting
from the time v0 found above. Since the big cell is non-vacant during this,
location �Info encodes a string with at most 2 errors. The rule Compute,
begins, at age (compute�start), with an application of Refresh. As the
corresponding lemma shows, at the end of this, location �Info will still
encode the same string with possibly fewer errors. Thereafter, the Info track
will not change until the next work period, except for the local changes
caused by the damage and its corrections by new applications of Refresh.

The following computation can be analyzed similarly to the first part
of the proof of Lemma 16.1 (Refresh). According to the definition of rule
Eval, the value put into the part corresponding to Memory* of �Hold is
obtained without using the result of Retrieve, so it is certainly a value
legally obtainable from �Info.

Any subsequent change of �Info or �Hold caused by a damage rec-
tangle will be corrected by a later Refresh, and any new inhomogeneity of

227Reliable Cellular Automata with Self-Organization

Doomed will be corrected by Heal. If Doomed=1 then the whole colony
dies, since the exposed right end is impossible to heal. In the case
Doomed=0, the rule Finish installs the changes on the track Info in one
step, leaving again no place for more than 2 errors. In both cases, the state
at time _2 will be a legal consequence of the state at time _2&.

4. Let us lower-bound now the distance between the two switching
times of '* in x. (The proof of the upper bound is similar but simpler.)

The usual analysis of Find�end shows that this rule changes End either
in all cells (but possibly two) or in none of them (but two). Suppose first
that End=U&1 stays that way during the whole work period. Then the
end would come only at Age=U&1. Measuring the time for a cell that
has never been affected by damage, this would give a lower bound
(U&2Q) p1Tv>Tv*.

Suppose now that End becomes smaller than U&1. Consider the first
execution of Find�end when this happens. Then there must have been some
damage-free cell x such that by the time t1 this execution inspects x it has
Age1(x, t1)=U&1. Let t0 be the time when Age1(x, t0)=0 at the begin-
ning of the work period: then t1&t0�UTv. From here, the desired lower
bound follows easily. K

The lemma below follows easily from the above proof and from Con-
dition 8.5 (Time Marking).

Lemma 16.6. Assume that, for some rational number a, Damage*
does not intersect [x]_[a&Tv*�2+, a+2Tv*]. If '* has no switching
time during [a+, a+2Tv*] then '*(x, a+)=Vac.

The following lemma infers about the present, not only about the past
as the Attribution Lemma.

For an extended damage rectangle [a0 , a1]_[u0 , u1], we call the
rectangle

[a0 , a1]_[u0 , u0+4{1]

its healing wake.

Lemma 16.7 (Present Attribution). Assume that the live cell
c0=(x0 , t0) in colony C with base cell z0 is not a germ, and is to the left
of the center of its originating colony. Assume also that C at time t0 does
not intersect the healing wake of any damage rectangle. Then one of the
following cases holds.

228 Ga� cs

(1) c0 is a member cell, attributed to C which is covered by a domain
of member cells at time t0 . If Q<Age<End&Q then the Info track of this
colony has at most 2 errors;

(2) c0 is a member cell from which a path of time projection at most
Q{1 leads back to to a growth cell in C and this growth cell can be
attributed to C+QB. At time t0 , if C+QB does not intersect the healing
wake of a damage rectangle then [x0 , z0+QB&] is covered by a domain;

(3) c0 is an outer cell, attributed to its originating colony. At time t0 ,
if C+QB does not intersect the healing wake of a damage rectangle then
[x0 , z0+QB&] is covered by a domain;

(4) c0 is a member cell and there is in C a backward path from c0 ,
with time projection �2(split�t)+(Q+1) {1 going back to a domain of
doomed member cells covering C.

Proof.

1. Suppose that c0 is a member cell and C was covered by member
cells at some time in the set I "E (as defined around (14.1)).

Using the Large Progress lemma repeatedly, we can go back to a time
before age (compute�start) in C, just as in the proof of the Legality Lemma
above. Then we can follow the development of the colony forward and see
that it forms a continuous domain together with its extension. The Info
track has at most 2 errors after the first application of Refresh, as seen by
Lemma 16.1 (Refresh).

If the computation results in a nonvacant value for the represented big
cell then we have case (1) of the present lemma. The represented field
Creatingj of the colony will be broadcast into the field Growingj of its cells,
as shown in Lemma 16.4. The homogeneity of this latter field will be main-
tained by Heal. Thus, depending on the value of Creatingj of the big cell,
growth will take place and the growth forms a continuous domain with the
originating colony.

Suppose that the computation results in a vacant value. Then Growingj

will be 0 everywhere but in the healable wake of the damage. Growth can-
not start accidentally by a temporary wrong value Growingj=1 in an
endcell since there is enough time to correct this value during the long
waiting time of Grow�step. Also, all cells become doomed. After Age=1,
the doomed right end becomes exposed by definition, and the whole colony
decays within Q{1 time units. Before that, the colony is full. After that, we
have case (4) of the present lemma.

2. If c0 is an outer cell then we have case (3) of the present lemma.

229Reliable Cellular Automata with Self-Organization

Proof. The Attribution Lemma attributes c0 to the originating
colony which is covered by member cells during I "E. It forms a continuous
domain with its extension, until the age End. From that age on, they form
a multidomain. This could only change if the originating colony goes
through a next work period and kills itself; however, there is not enough
time for this due to (13.8).

3. Suppose that c0 is a member cell but during I "E, the colony is
never covered by member cells. Then we have case (2) of the present
lemma.

Proof. Let c1 be a non-member cell in C during I "E. Then it is an
outer cell that can be attributed to its originating colony and then the
reasoning of 2 above can be repeated. K

17. COMMUNICATION

17.1. Retrieval Rules

Here, the rules for information retrieval from neighbor colonies will be
given. Neighbors of a cell are of the form �j (x) for j # Nb�ind where

Nb�ind=[&1.5, &1, 0, 1, 1.5]

was defined in Subsection 8.2. Now these same notions of neighbor are
applied to big cells and the distance unit is QB rather than B. We define
Mail�ind as in 7.4.2:

Mail�ind=[&1.1, &0.1, 0.1, 1.1].

First some definitions will be given, for a cell x and its neighbor y in direc-
tion j which is equal to �1.5 j (x) if the latter is nonvacant and �j (x)
otherwise. For a cell x, let

x*=x&Addr(x) B (17.1)

be the base of the originating colony of x and

x*0=x&(Addr(x) mod Q) B

be the base of the colony of x. Thus, we have x*=x*0 iff Addr(x) #
[0, Q&1]. The relation of cells and their originating colonies will define
the predicate

230 Ga� cs

Edgej (x)={
0
1
1.5
�

if x*=y*,
if x and y are members of two adjacent colonies,
if 1<(x*&y*)�(jQB)<2,
otherwise.

The field Mailk has the same subfields as in Subsection 7.4. The subfield
Mailk .Status can now also have the value

Fickle

standing for ``transitional.'' When Mailk .Status=Fickle then the other sub-
fields of Mailk will play no role therefore we will, informally, also write
Mailk=Fickle. The mail field Mailk of a cell will cooperate, in direction j,
with mail field

peer(k, j)=k& j wEdgej x

of a neighbor if the latter index is in Mail�ind. To control the track Mailk ,
there is a one-bit track

Controlk # [post, get]

which moves in the direction &sign(k) (opposite to the direction of mail
movement which it controls). For |k|=0.1, the values of Controlk will
simply depend on age: in certain stages of the program the mail must be
posted, in others it must be passed. For |k|=1.1, the value of Controlk will
travel in the direction &sign(k). For robustness, a change in the value of
Controlk will propagate into the inside of the next colony only when it is
not to be followed by a change back too soon. By definition, for j #
[&1, 1], either �j (x) or �1.5 j (x) is vacant. For every field F we denote by

F (j) (17.2)

the field F of the nonvacant cell �nj (x) for n # [1, 1.5]. Here is the formal
propagation of control:

rule Propag�control [
pfor j in [&1, 1] do [

cond [
? Edgej>0 or

(1) (if �2 j (x) is in the colony of x then Control 2 j
1.1 j=Control j

1.1 j)
! Control1.1 j :=Control (j)

peer(1.1 j, j)

]]]

231Reliable Cellular Automata with Self-Organization

Condition (1) will make sure that a damage rectangle creates at most 1
wrong value of the control and that this wrong value practically does not
propagate.

Remark 17.1. In the present discussion, we assume that |Mailk .Info|
=|Info| , which is not really true for a separable transition rule. However,
as mentioned in Remark 7.9, the only modification for the case of a narrow
mail track is that the Info track must be split up into narrower tracks
(packets) and each narrower track must be mailed in a separate copy
operation.

The rule below shows when and how mail will be posted:

rule Post�mail [
for k # [&1.1, 1.1] do [

cond [
? Controlk= post and Kind # [Member, Growth]
! cond [

? Age � [Q, (grow�start)]
! Mailk :=Fickle
?! [

Mailk .Info :=Info
Mailk .Addr :=Addr
]]]]]

Even if the posting of mail is requested, the posted mail will have value
Fickle if the age of the sending cell is close to a work period transition of
its colony (this will be the case with all growth cells).

Let us define, for j=&sign(k) and each subfield F of Mailk ,

Mail�to�receivek .F

Undef if peer(k, j) is undefined,

={ j } Edgej if F=Fromnb, |k|=0.1, 1�Edgej<�,

Mail (j)
peer(k, j) .F otherwise.

The ``hand-shaking'' condition

Mail�used(k)

says that the cell is free to rewrite Mailk since the value was already used
by the neighbor in direction j=sign(k). It is defined to be true if either

232 Ga� cs

peer(k, j) or peer(k, &j) is undefined, or the following holds for all F :

Mail (j)
peer(k, j) .F={& j } Edgej

Mailk .F
if F=Fromnb, k=1.1 j, 1�Edgej<�,
otherwise.

Information on the Mailk tracks moves under the effect of the following
rule, except when it is overridden by Post�mail.

rule Move�mail [
pfor k in Mail�ind do [

? Controlk= get and Mail�used(k)
! Mailk :=Mail�to�receivek

]]

Arriving mail from neighbor m will be stored in location �Retrievedm on
track Portm . Let us call by �Retrievedm .Status the status track of the loca-
tion �Retrievedm . Locations �Retrievedm will be checked as to whether the
information retrieved in them is transitional (a similar situation arises in
the proof of Theorem 8.10 (Reach Extension)). The program

Check0(check�retrieve, Ck�res, loc1 , loc2 ,...)

checks whether for each of the locations that are its arguments, there is a
c # [Normal, Undef] such that with the possible exception of 3 cells, all
symbols are equal to c. The exceptions allow for one damage rectangle in
each interval of size QB along the way from which information is retrieved.
The checking rule Check1() was defined in 16.2, and the program
recheck�1 was defined at (16.4).

subrule Age�check [
Check1(check�retrieve, Ck�res, (�Retrievedm .Status: m # Nb�ind));
Check1(recheck�1, Ck�res, Ck�res, 2);
]

Lemma 17.2 (Age Check).

(a) Assume that at the beginning of an application of Age�check, for
all m, with the possible exception of 4 symbols, either all elements of the
string in the location �Retrievem .Status are Normal or all are Undef.
Assume moreover that either the check is damage-free or we can write 3 in
place of 4 above. Then at the end, with the possible exception of 2 adjacent
cells, all cells of the colony have Ck�res=1.

(b) Assume that at the beginning of Age�check, for some m, it is not
true that with the possible exception of 4 symbols, either all elements of the
string in the location �Retrievem .Status are Normal or all are Undef. Then

233Reliable Cellular Automata with Self-Organization

at the end, with the possible exception of 2 adjacent cells, all cells of the
colony have Ck�res=0.

Proof. The proof is similar to the proof of Lemma 16.1 (Refresh). K

The subrule Retrieve is essentially a repetition of another subrule.

subrule Retrieve [
Ck�res :=0
repeat 5 times [

Retr�cycle;
idle for *(End&(grow�start)+Q) steps
]]

The long idle time between the applications allows for getting the neighbor
colonies out of a possibly transitional situation. The rule Retr�cycle will
send the commands post and get on the control lines. Command post is
repeated just enough times to get it across. Command get is repeated
enough times for the mail track to transfer the information from any
neighbor. During this time, the rule will snatch information from each
track Mailk to the appropriate track Portm . Then, the information will be
checked for safety using Age�check. If it is safe then the retrieval will not
be repeated: the rule still goes through the same number of steps but
without resetting the receiving area and without any snatching.

rule Retr�cycle [
cond [

? Ck�res=0
! for m # Nb�ind "[0] do [

Write(Vacant�str, �Retrievedm);]];
repeat 3Q* times [

(1) for j=&0.1, 0.1 do [
Controlj :=post]];

(2) repeat 2Q* times [
for j=&0.1, 0.1 do [

Controlj :=get]]
(3) &cond [

? Ck�res=0
! for j=&0.1, 0.1 do [

cond [
? Addr=Mailj .Fromaddr
! PortMailj.Fromnb :=Mailj]]];

Age�check
]

234 Ga� cs

The total number of steps of Retrieve can be estimated as

c1Q* &Sk&�wk

for an appropriate constant c1 .

17.2. Applying the Computation Rules

For proving part (e) of Condition 8.8 (Computation Property) for big
cells, assume that for some rational a, we have

Damage* & [x&3QB, x+4QB&]_[a&Tv*�2+, a+2Tv*]=< (17.3)

By Lemma 16.6, if there is no switching time during [a+, a+2Tv*] then
'*(x, a+)=Vac.

Lemma 17.3 (Retrieval). Assume that _0 or _1 , _2 is defined
for '*. Then we have case (e) or (f) or (g) of Condition 8.8 (Computation
Property).

Proof. As in the proof of Lemma 16.5 (Legality), consider a time v2

such that '*(x, v2){Vac. If _0 is defined then v2=_0 , while if _2 is defined
then it is some time very close from below to _2 . Let us define v1 as in that
proof. As in part 2 of that proof, the Large Progress Lemma can extend the
path repeatedly backward from v1 until we arrive at either an outer
or a germ cell or at a cell c0=(x0 , v0) in the same work period, with
Age(c0)�2Q.

1. Assume that c0 is a germ cell. Then we have case (g) of the Com-
putation Property.

Proof. Repeated application of the Large Progress Lemma gives a
time interval long enough during which the colony and the adjacent
colonies on both sides have been covered by germ cells. This implies that
the state of the new big cell is latent and also that for the big cell x, we
have '*(�j (x, t, '*), t)=Vac for some time t in [a+, _0&] and for j{0.

2. Now assume that c0 is a member cell.

From time v0 on, we can follow the development of colony C. The
computation process can be treated similarly to the proof in the Legality
Lemma; the additional problem is the retrieval of the needed information
from the neighbor colonies in such a way that all retrieved information can
be attributed to a single time instant. (This issue was solved once already
in the proof of Theorem 8.10 (Reach Extension)).

235Reliable Cellular Automata with Self-Organization

Event (17.3) implies that in the whole space-time area in which this
communication takes place only the usual damage rectangles must be con-
sidered. Due to (13.8), the whole computation fits into an interval of length
Tv* and therefore in each direction, at most 3 damage rectangles can affect
the retrieval (considering communication with a non-adjacent neighbor
colony).

The extension arms of the colony will be extended by the rule Extend,
defined in Subsection 12.4. The success of carrying out the extension over
possible latent or germ cells or an opposing extension arm in the way is
guaranteed by Lemma 12.8 (Creation). If the extension cells of C$ are
growth cells then they are stronger but the age check will fail in this case,
so we can assume that this is not the case. If there are extension arms from
both colony C and a non-adjacent neighbor colony C$ then the strength
ordering gives preference to one side and therefore soon only one of the
extension arms remains.

Part (1), of rule Retr�cycle sends the message post along the control
line Control0.1 to the cells of the nearest colony C$ (or its extension) on the
left communicating with C. The existence and condition of C$ will be dis-
cussed below. This message will be maintained by the healing rule as a
locally maintained field. Its value arrives on control line Control1.1 to C$ (or
its extension). There, its value is propagated (carefully) by Propag�control.
Via the rule Post�mail, the signal causes the cells of C$ to post the needed
information.

In due time, part (2), of rule Retr�cycle sends the message get along
the same control line to colonies C$ and C; this causes the track Mail1.1 of
C&QB to pass its information to the right, to track Mail0.1 of C, which
passes it further to the right. Damage can occur during the passing phase,
but after healing its effect is confined to information (not the control fields)
in the cells (at most two) which it changed. During the same phase, due to
the parallelly running part (3) of Retrieve, the Portm fields of each cell of
C snatch the information addressed to them from the right-moving track
Mail0.1 .

At the end of Retr�cycle, rule Age�check will be applied. By Lemma 17.2
(Age Check), at the end of the application of this rule, all but maybe 2 cells
of the track Check�res contain the same value. We will say that the process
passed or failed the age check. The rule Retr�cycle is iterated 5 times but
it will not affect the Portm tracks after it passes the age check.

2.1. The age check can fail at most 4 times.

Proof. For every neighbor colony from which mail is to be retrieved,
at most two iterations of Retr�cycle can fail the age check. Normally, there
can only be one such failure, when the colony was found in a transition

236 Ga� cs

age: this gives at most 1 failure on the left and 1 failure on the right. Due
to the idling between iterations of Retr�cycle, the next iteration will find
the colony past the transition age.

It can also happen that the neighbor colony was found in a transition
age just before vanishing and next time it will be found in a transition age
when it is just being recreated by a farther colony. However, it is easy to
see that this can happen only for one neighbor colony on the left and one
on the right, bringing the total number of failures to at most 4.

Take an iteration of Retr�cycle that passes the age check. Let t0 be the
earliest time after the beginning of this iteration when the whole area
D=[x&2QB, x+3QB] is free of the healable wake of any damage rec-
tangle, and let t1 be the end of this iteration. Let us call any colony C$ with
base x$ in [x&2Q+, x&Q] a potential left neighbor colony.

2.2. Suppose that there is a potential left neighbor colony C$ that
stays covered during [t0 , t1] (a temporary hole due to the damage rec-
tangle and healing within 4{1 time units does not count).

It is easy to see by Lemma 16.7 (Present Attribution) that all cells
between C$ and C (if any) not in the wake of a damage rectangle belong
to extensions of either C$ or C.

The retrieval from C$ proceeds according to the program. The mail
will be passed from C$ to C through the remaining extension arm (if any).
The age check guarantees that all the retrieved information can be
attributed to a single instant of time before t1 , since it will not change
during the at most 3Q{1 time units needed for its reading (we count {1 for
each mail-passing step, and add Q{1 more time units for the possible push-
back of extension arm by an opposite one).

According to Lemma 16.7 (Present Attribution), before retrieval, each
of the strings to be retrieved represents some string within 2 deviations.
During retrieval, damage can change at most 4 cells, increasing the number
of deviations to at most to 6. Since we use a 6-error-correcting code the
computation proceeds from here as expected.

2.3. Suppose now that there is no potential left neighbor colony
that stays covered during [t0 , t1].

There are the following possibilities, according to the Present Attribution
Lemma 16.7:

(1) No cells occur in [x&QB, x&] during [t0 , t1];

(2) Growth to the right from some colony C$&QB where C$ is a
potential left neighbor colony;

237Reliable Cellular Automata with Self-Organization

(3) A potential left neighbor colony C$ is beginning to disappear as
in part (4) of the Lemma 16.7 (Present Attribution). Then within 2Q{1 time
units hereafter all cells of C$ disappear.

Let us look at the Porti track before the age check, for i # [&1, &1.5]. If
for some cell x on it Porti (x) is not the direct result of damage and
Porti .Status(x){Undef then this value was obtained from a potential
neighbor colony C$ by mail during the last retrieval cycle. In all the cases
considered, this value is then Fickle. Since the age check passes, Lemma 17.2
(Age Check) implies that, with the possible exception of 2 intervals of 2
cells, the cells of C have Porti .Status=Undef. Thus at the end of Retrieve,
the string on the Port i track represents a vacant value within 4 errors.

2.3.1. There is a time interval of length at least 3Q{1 before t1 in
which all big cells corresponding to potential left neighbor colonies C$ are
vacant and in which therefore the information collected by Retrieve can be
attributed to any instant.

Proof. In case (1), the big cell corresponding to colony C$ is indeed
empty all the time. In case (2), the growth process from colony C$&QB
could not have started long before t0 since so few cells reported unsafe age:
therefore the duration of growth provides the necessary long interval. In
case (3), cells of C$ start vanishing within Q steps after t0 . Otherwise
namely the Port i track would snatch values with Status=Fickle and then
would not pass the age check. Once the vanishing of colony C$ started, it
will be over within Q{1 time units. Repopulating it by growth will take suf-
ficiently long that it does not create a new cell during this retrieval cycle.

3. Assume that c0 is an outer cell. Then we have case (f) of the Com-
putation Property.

Proof. The fact that the new big cell is latent can be similarly con-
cluded. The Attribution Lemma allows us to attribute the outer cell in
question to a neighbor colony, say with base cell x&QB on the left, from
which it has grown. This implies Growing1=1 for this colony, which, as
seen above, implies Creating1=1 in the big cell x&QB.

Now the reasoning of 2 above can be applied to this big cell, seeing
that it computes its next state according to the transition rule from infor-
mation retrieved from its neighbors. In particular, it applies the rule
Arbitrate and therefore can only have Creating1=1 if the big cell x is
vacant when observed.

Therefore, on the other hand, the creation of the latent big cell x can
be attributed to the rule Create, hence the transition rule was also satisfied
in big cell x. K

238 Ga� cs

The following lemma covers the cases left after the above lemma.

Lemma 17.4 (Growth). Assume that we have (17.3) and '*(x, t)
=Vac for t # [a+, a+2Tv*]. Then part (h) of Condition 8.8 (Computa-
tion Property) applies to '*.

Proof. Let C be the colony whose base is x. If there is any (y, t) with
0<| y&x|<QB, t # [a+, a+2Tv*] and '*(y, t){Vac then we are done;
assume therefore that there is no such y. If there is any t in [a+,
a+2Tv*] when both '*(x&QB, t) and '*(x+QB, t) are vacant then
at this time there is no potential creator, and we are done. The case
remains when for all t in [a+, a+2Tv*] there is a j # [&1, 1], with
'*(x+ jQB, t).Creating& j=1 and there is no big cell y during this time
whose body intersects the potential body of the big cell x. We will show
that this case does not occur. Without loss of generality, suppose

'*(x&QB, a+2Tv*&Tv*�2).Creating1=1.

1. Suppose that there is no t in [a+, a+2Tv*&Tv*�2] with
'*(x+QB, t).Creating&1=1.

Then for all t in this interval, we have '*(x&QB, t).Creating1=1.
Tracing backward and forward the evolution of the colony of the big cell
x&QB (and applying Lemmas 16.5 (Legality) and 17.3 (Retrieval), we will
find a whole work period [u1 , u2] of colony C&QB in [a&Tv*�2,
a+2Tv*&Tv*�2]. At the end of this work period, growth to the right
takes place.

If the growth succeeds this would contradict our assumption: suppose
that does not. This can only happen, according to Lemma 12.8 (Creation),
if some non-germ cell z is in the way. Lemma 16.7 (Present Attribution),
shows that z is a left extension cell of a live big cell y in [x+QB+,
x+2QB&], and is therefore not stronger than the right growth it is keep-
ing up.

The rule Arbitrate kills z since it prefers right growth to the left one,
and therefore z does not really prevent the right growth from succeeding.
Since this preference is arbitrary assume that the rule Arbitrate actually
prefers growth in the left direction and that z is a left growth cell. We can
trace backward and forward the evolution of the colony of y to see that it
carries its growth to conclusion, resulting in a new big cell y&QB before
time a+2Tv*, whose body intersects the body of x. This has also been
excluded.

2. Suppose that there is also a t in [a+, a+2Tv*&Tv*�2] with
'*(x+QB, t).Creating&1=1.

239Reliable Cellular Automata with Self-Organization

Tracing backward and forward the evolution of the colony of the big
cells x&QB and x+QB (and applying the Legality and Retrieval lemmas)
it is easy to see that they are non-vacant for all t in [a+, a+2Tv*] (since
according to Condition 12.6, Creatingj=1 implies Dying=0).

It is easy to see that there is a j # [&1, 1] and [t1 , t2]/[a&Tv*�2,
a+2Tv*] such that [t1 , t2] is a dwell period of big cell x+ jQB with
Creating& j=1. Assume first that j=&1 can be chosen.

In the colony C of x between the colonies C&QB and C+QB, due
to Lemma 16.7 (Present Attribution), all non-germ cells belong to the
extension of one of these two colonies. The growth rule of x&QB will try
to create a latent big cell in C. If the growth rule of C+QB is not active
then there are no obstacles to this creation and it succeeds, contrary to the
original assumption: so we are done. Moreover, it succeeds even if the
growth rule of C+QB is active since the strength relations favor growth
from the left.

Assume now that only j=1 can be chosen. The reasoning is similar to
the above except when the growth rule of C&QB is active at the same time
when C+QB is trying to grow left. This can only happen when the dwell
period [t1 , t2] of big cell x+QB overlaps with a dwell period [u1 , u2] of
big cell x&QB with Creating1=1. By our assumption, [u1 , u2] /3
[a&Tv*�2, a+2Tv*].

In the next reasoning, we will use the fact that growth is confined to
a time interval of length at most Tv*�2 at the end of any colony work
period.

Assume t2>a+2Tv*&Tv*�2. Then we must have u2>a+2Tv*.
Hence the previous dwell period [u0 , u1] of x&QB is in [a+, a+2Tv*]
and must have Creating1=0. Therefore Creating&1=1 in the previous
dwell period [t0 , t1] of x+QB. Due to the confinement of growth to the
end of the work period, the growth to the left from C+QB at the end of
the period [t0 , t1] will be undisturbed by growth to the right from C&QB
and the creation succeeds near time t1 , contrary to the original assumption.

Assume now t2�a+2Tv*&Tv*�2. Then due to the confinement of
growth just mentioned, we have u2�a+2Tv*. Hence, u1<a&Tv*�2, and
the next dwell period of x&QB, contained entirely in [a+, a+2Tv*],
must have Creating1=0. Then the next dwell period of x+QB is still
entirely in [a+, a+2Tv*] and has Creating&1=1, and the creation to the
left succeeds. K

17.3. The Error Parameters

Lemma 9.4 (Amplifier) says that given a (broadcast) amplifier frame
Frame with large enough R0 , we can complete it to a uniform (broadcast)

240 Ga� cs

amplifier. We leave out the case of broadcast amplifiers: the proof comes
with some simplification from the proof for general amplifiers.

The main ingredient of our amplifier is the sequence of transition func-
tions Sim�transk and the sequence of codes .k*

, .k**
, .k*, which was

defined in the course of the proof. It remains to verify the amplifier proper-
ties listed after (9.21). Let us recall them here.

(a) (Riderk) with guard fields (Guard k) is a guarded shared field for
(.k*

), (.k**
), as defined in Subsection 4.2;

(b) the damage map of the simulation 8k is defined as in Subsection 8.1;

(c) Trk is combined from Rd�transk and Sim�transk , with fields
Riderk, Guard k;

(d) Mk=Rob(Trk , Bk , Tvk , Tv
k , =k , =$k);

(e) 8k has ="k -error-correction for .k**
.

The first three properties follow immediately from the definition of Trk

and the code, given in the preceding sections. It has also been shown, by
induction, that Mk+1 is a robust medium simulated by Mk via the code,
with =k as the error bound and Tvk , Tv

k as the work period bounds. It
needs to be shown yet that =$k indeed serves as the bound in the definition
of Mk=Rob(} } }), and that the simulation has ="k -error-correction.

=$k+1 must bound the difference from 0.5 of the probability of the new
coin-toss of the simulated computation, and the simulation in the work
period must be shown to have ="k -error-correction. We must show that
in a big cell transition, the probability that the Rand* field is 1 is in
[0.5&=$k+1 , 0.5+=$k+1]. (We also have to show that the bounds on the
probabilities are of the form of sums and products as required in the defini-
tion of canonical simulation, but this is automatic.)

In case there is no damage rectangle during the whole work period,
the field Rand* was computed with the help of the rule Randomize. This
rule took the value X found in field Rand of the base cell of the colony and
copied it into the location holding Rand*.

Remark 17.5. This is the point where we use that our simulation
is a canonical simulation but not necessarily a deterministic one: the time
at which the base cell tosses the coin can be found using a stopping time
within the colony work period.

By the property of Mk , the probability that X=1�2 is within =$k of 0.5.
By its definition, ="k upper-bounds the probability that any damage rec-
tangle intersects the colony work period. Therefore the probability that

241Reliable Cellular Automata with Self-Organization

Rand*{X can be bounded by =k . Hence, the probability that the Rand*
field is 1 is in

[0.5&=$k&="k , 0.5+=$k+="k]=[0.5&=$k+1 , 0.5+=$k+1].

As just noted, with probability ="k+1 , no damage rectangle occurs during a
colony work period. Under such condition, the rule Refresh works without
a hitch and each cell contains the information encoded by the code .

**
from the state of the big cell. This shows that our simulation has the
="k -error-correction property.

18. GERMS

18.1. Control

Recall the definition of 1 (I, d) in (10.2).

Lemma 18.1. Let x0 be a site and t1<t2 times. Assume that
(x0 , t1) is controlled and 1 (x0 , 3B)_[t1&8Tv, t2] is damage-free. Then
(x0 , t2) is controlled.

Proof. In the proof below, controlling always means controlling
(x0 , t1). Let t0=t1&6Tv. For t in [t0 , t2], let

A(t)=1 (x0 , 3B)_[t0 , t].

1. Let t # [t1 , t2]. Assume that x0 is controlled for all t$<t. Then
[x0&3B, x0+3B&]_[t] contains a cell.

Proof. By our assumption, for all t$<t, each set [x0&B, x0+B&]
_[t$&6Tv, t$] contains a cell x1 . If it stays until time t then we are done.
If it disappears the death must have been caused by Arbitrate, due to a cell
y1 with | y1&x1|<2B about to create another cell whose body intersects
with the body of x1 . Cell y1 had Dying=0 to be able to kill and therefore
survives until time t.

2. Let t # [t1 , t2]. Assume that x0 is controlled for all t$<t. Then
1 (x1 , B)_[t&6Tv, t] contains a cell.

Proof. By assumption, for all t$<t, each set 1 (x0 , B)_[t$&6Tv, t$]
contains a cell x1 . Without loss of generality, suppose x1�x0 . If this is also
true for t$=t then we are done. Suppose it does not: then one such cell
x1 disappears at time t&6Tv. This must have been caused by the rule
Arbitrate, due to some cell y1 about to create an adjacent neighbor whose

242 Ga� cs

body intersects with the body of x1 . Without loss of generality, assume
y1 # [x1&2B+, x1&B&]. According to the Arbitrate, cell y1 must have
had Dying=0, Creating1=1 to be able to erase and therefore survives until
time t. Since according to Condition 12.6, only the rule Arbitrate changes
Creating1 , and only when a right neighbor has appeared, cell y1 keeps try-
ing to create a right neighbor.

2.1. Suppose that y1 succeeds in creating y1+B before time
t0+2Tv.

If y1+B�x0&B then it will control; otherwise, y1+B will try to
create y1+2B. If it succeeds in 2Tv time units then the created cell will
control; if it does not then according to the Computation Property,
another cell in [y1+2B+, y1+3B&] interferes and it will control.

2.2. Suppose that the creation does not succeed within 2Tv time
units.

Then a cell x2 # [y1+B+, y1+2B&] interferes. If x2�x0&B then
x2 will control, suppose therefore that x2<x0&B. We have |x1&x2|<B
since x1 , x2 # [y1+B, y1+2B]. Therefore x2 must have arisen after x1 dis-
appeared. Due to part 1 above, x2 could not have arisen by spontaneous
birth, hence it must have been created by a right neighbor. If x2 was
created after t0 then its creating right neighbor is alive after t0 and it will
control. Suppose therefore that x2 was created at time t0 and its right
neighbor disappeared by time t0 .

Suppose that x2 stays for at least 2Tv time units; then it tries to create
x2+B. If it succeeds then x2+B will control; if it does not then the cell
that interferes in the creation will control.

Suppose that x2 disappears before t0+2Tv. Suppose that y1 now suc-
ceeds in creating y1+B before time t0+4Tv. If y1+B�x0&B then it will
control; otherwise, it will try to create y1+2B. If it succeeds in 2Tv time
units then the created cell will control. If it does not then the cell that inter-
feres will control.

Suppose that y1 still does not succeed in its creation. Then another cell
x3 appears before t0+4Tv that prevents this. This x3 must have been
created by a right neighbor that will control. K

Lemma 18.2. The media of our amplifier have the lasting control
property.

Proof. Assume that for some sites x0 and times t1<t2 , with

I=1 (x0 , ((t2&t1)�Tv+4) B),

243Reliable Cellular Automata with Self-Organization

I_[t1] is blue and I_[t1&2Tv, t2] is damage-free. We have to prove that
(x0 , t2) is blue.

Lemma 18.1 implies that this point is controlled; what remains to
show is that the controlling cell in 1 (x0 , B)_[t2&6Tv, t2] is blue. Due to
part 1 above, in the area considered, there is always some cell within dis-
tance 3B left or right of any site, and this prevents any germ cell from being
born. If therefore the controlling cell would be non-blue then one could
construct from it a path of non-blue cells backwards. This path cannot
reach outside I during [t1 , t2] since it needs at least Tv time units to move
one cell width away from x0 . K

Let us introduce an undirected graph G(') on space-time points of a
space-time configuration ' by defining below the following kinds of edge.

(1) points (x, t) and (x, t$) are connected for t<t$ if a cell of ' is
present in x for all of [t, t$];

(2) suppose that |x& y|<2B and there is a cell at time t in both x
and y, and moreover there is a cell in y during the a whole dwell period
of x containing t. Then (x, t) and (y, t) are connected.

(3) if a cell has just been created in (x, t) by an adjacent cell y whose
last dwell period before t begins in t$ then (x, t) and (y, t$) are connected.

These are all the edges of graph G.

Lemma 18.3. Let t0=t1&8Tv,

I=1 (x0 , 9B)

Assume that I_[t0] is controlled and the area I_[t0&8Tv, t1] is
damage-free. Then there are sites z1�x0�z2 and a path in the graph G
defined on I_[t0 , t1], connecting (z1 , t1) with (z2 , t1).

Proof. Since (x0 , t0) is controlled there is a cell (x1 , u1) in 1 (x0 , B)
_[t0&6Tv, t0]. Without loss of generality, assume that x1�x0 .

1. Suppose that x1 stays a cell until time t1 .

Since (x1&B, t0) is controlled there is a cell (x2 , u2) in 1 (x1&B, B)_
[t0&6Tv, t0]. If the cell in x2 exists until time t1 then necessarily x2<x0 ,
and it is easy to see that there is a time v1 such that the points (x1 , t1),
(x1 , v1), (x2 , v1), (x2 , t1) form a path in G.

1.1. Suppose that the cell in x2 lasts until t0+2Tv.

Then it coexists with x1 at time t0 , therefore x2 # [x1&2B+, x1&B].
Since (x2&B, t0) is controlled there is a cell (x3 , u3) in 1 (x2&B, B)_

244 Ga� cs

[t0&6Tv, t0]. If the cell in x3 exists until time t1 then x3�x2&B, and it
is easy to see that there are times vi such that the points (x1 , t1), (x1 , v1),
(x1 , v2), (x2 , v2) (x2 , v3), (x3 , v3), (x3 , t1) form a path in G.

If the cell in x3 disappears before time t1 then this has been caused by
Arbitrate, via a cell y1 about to create another cell intersecting with the
body of x3 . As seen in similar discussions above, cell y1 exists during the
whole of [t0&8Tv, t1]. Therefore it is not equal to x2 which is assumed to
disappear. But its body does not intersect the body of of either x2 or x3

hence y1 # [x3&2B+, x3&B&].
If cell x3 lasts until t0+2Tv then it is easy to see that there are times

vi such that the points (x1 , t1), (x1 , v1), (x1 , v2), (x2 , v2) (x2 , v3), (x3 , v3),
(x3 , v4) (y1 , v4), (y1 , t1) form a path in G.

Suppose that x3 disappears before t0+2Tv. Now y1 tries to create
y1+B which (if this succeeds) tries to create y1+2B, etc. until reaching x1 .
If we reach x1 this defines a path again between (x1 , t1) and (y1 , t1).

Suppose that one of these creations, e.g. the creation of y1+B does
not succeed. Then a cell exists in

[y1+B+, y1+2B&]_[t0+2Tv, t0+4Tv].

The space is not sufficient for this cell to be born spontaneously, therefore
it can be traced back via creations to one of x1 , x2 , x3 or to some cell exist-
ing during [t0 , t0+2Tv] between y1 and x2 . This way again a path can be
defined.

1.2. Suppose that the cell in x2 disappears before t0+2Tv.

This has been caused by Arbitrate, via a cell y1 about to create
another cell intersecting with the body of x2 ; as above, cell y1 exists during
the whole of [t0&8Tv, t1]. Then either y1=x1 or y1 # [x2&2B+,
x2&B&]. In the second case, there are points vi such that (x1 , t1),
(x1 , v1), (x1 , v2), (x2 , v2) (x2 , v3), (y1 , v3), y1 , t1) form a path in G.
Suppose therefore y1=x1 .

After x2 dies, either y1 succeeds creating y1&B before time t0+4Tv

or some cell (x$2 , u$2) interferes with this. In the first case, let us call
x$2= y1&B. In both cases, we can continue as in part 1.1 above with x$2 in
place of x2 and t0+5Tv in place of t0+2Tv.

2. Suppose that the cell in x1 disappears before time t1 .

This has been caused by Arbitrate, via a cell y1 about to create
another cell intersecting with the body of x1 ; again, y1 exists through all
the time considered here. If y1>x1 then we can continue as in part 1 above

245Reliable Cellular Automata with Self-Organization

with y1 in the role of x1 above and x1 in the role of x2 above. If y1<x1

then we can do the same, after a left-right reflection. K

Lemma 18.4. The simulations of our amplifier have the control
delegation property.

Proof. Let M=Mk , 8=8k for some k, for our amplifier, and let '
be a trajectory of M. Let Tv=Tv

k , Tv*=Tv
k+1 , etc. Let

I=1 (x0 , (8Tv*�Tv*+4) QB)

Assume that I_[t1&8Tv
2] is blue in '*=8*(') and I_[t1&16Tv

2 , t1] is
damage-free in '. We must prove that (x0 , t1) is blue in '.

As mentioned at the beginning of Section 11, the simulation .k*
consists of two parts: the simulation of Mk+1 by a medium M$k of reach 2,
and the simulation of M$k by Mk as shown in Theorem 8.10. Control
delegation from M$k to Mk is trivial, since the cells of the two media are
essentially the same; hence, we need to consider only control delegation
from Mk+1 to M$k .

Lemma 18.3 implies that there are sites z1�x0�z2 and a path in the
graph G('*) defined on I_[t0 , t1], connecting (z1 , t1) with (z2 , t1). This
path consists of blue big cells: indeed, since the area is controlled in '*
birth is excluded, therefore a non-blue big cell would have to trace back its
origin to outside I, but the complement of I is too far to do this in the
available time. The path gives rise in a natural way to a sequence (c1 ,..., cn)
of small cells with c1=(z1 , t1), cn=(z2 , t1), and for each i, either ci and
ci+1 are in two consecutive dwell periods of the same cell, or have the form
(x, t), (y, t) with |x& y|<2B. All these cells are member or extension cells
of the colonies of the big cells of the path. Since Color is a broadcast field
and Guard=&1 in all our cells, these small cells are all blue. Let us form
a polygon P1 connecting these points with straight lines.

Let A be the set of elements of I_[t1&16Tv
2 , t1] reachable from

(x0 , t1) along any polygon at all without crossing P1 . It is easy to see that
A is controlled; let us show that it is also blue. Indeed, according to
Lemma 18.1, no birth can take place in a controlled area, therefore from
any cell in A a path of ancestors passes to the outside of A. When it crosses
P1 one of its cells must be equal to a blue cell and therefore the whole path
must be blue. K

18.2. The Program of a Germ

We now add some rules to the program of our amplifier to make
it self-organizing. A germ starts out as a single cell with Age=0 and

246 Ga� cs

Addr=&Q and tries to grow into an area covering 3 colonies by growing
right, but can be held up by some other cells. The cell with address &Q
will be called the leader of the germ (calling it the ``base'' would be con-
fusing). Germ cells are weaker than non-germ cells, hence a growing germ
cannot intrude into an extended colony and a growing colony can destroy
germ cells in its way. In what follows, the germ growth rule is based on
work periods just as colonies. Not all germ work periods are alike: each
work period is associated with a level. Let

l=log(3Q) (18.1)

(not necessarily an integer). The level of the germ is stored in a field

Level # [0, l&] _ �

of each of its cells. Cells stronger than germ cells have level �. Latent cells
are level 0 germ cells; thus, even latent cells have color. Age will be reset
to 0 at the beginning of each work period, and the work period of level s
lasts until Age=U(s) where

U(s)=4p1*2s.

We say that a work period has level s, if the leader cell has that level. Typi-
cally, in this case the germ has already been extended to a size at least 2sB.
Therefore if a right edge cell has Addr+Q<2Level&1 then it will be called
exposed. This extends the definition of exposed edges given in Subsection 12.1
without affecting any previous reasoning using this notion. There is also a
field

Active # [0, 1].

Cells with Active=1 are called active, others passive. Here are the rules
using these properties:

1. If a germ cell sees a (not necessarily adjacent) germ cell on the left
with the same color but higher level then it becomes vacant.

2. When a passive germ cell of level s sees an active germ cell on the
left, of the same color and level, with Age�U(s)&2p12s, then it turns
vacant.

The work period is divided into two parts: growth and computation. In
growth, the right end attempts to grow to size 2s+1. The computation part
is omitted if the right end has address 2Q&1 (the final goal). This part,
which takes the 2s+2 last steps of the work period, checks whether the

247Reliable Cellular Automata with Self-Organization

germ has size 2s+1B, by propagating left the information about the address
of the right edge in a field New�level. If New�level>Level then in the next
work period, each cell sets Level :=New�level. Otherwise, the leader cell
chooses a random number in [0, 1] and broadcasts it right on the track
Active. This ends the computation.

Remark 18.5. Probably a much simpler rule (e.g., a random deci-
sion each time there is a conflict) would do but our rule makes the proof
very simple. On the other hand, the estimates of the proof would be much
better with a somewhat more complicated rule that allows for some error-
correction in the germ cells, e.g., erasing a small germ surrounded by cells
of different color.

18.3. Proof of Self-Organization

Lemma 18.6 (Germ Attribution). Let c1=(x1 , t1) be a blue
germ cell, of level s. Assume that the area

[x0&3 } 2sB, x0+2sB]_[t1&2 } 2s{1 , t1+2U(s) *]

is free of damage and of nonblue cells. Then either c1 is part of a domain
with no exposed edge or there is a blue cell of higher level in the above
area.

Proof. Let us construct a path P1 backward from c1 in such a way
that we keep the path on the left edge of the germ: thus, whenever possible
we move left on a horizontal link, otherwise we move back in time on a
vertical link. At time

t0=t1&2s{1

the path might stop at a cell c0 one level lower than c1 .

1. There is a time t3 in [t0 , t1] when P1(t3) is a leader and the germ
has size �2s.

Proof. Suppose this is not so. If the right end is exposed at time t0

then it remains so and the germ decays away in the given time. If the left
end is exposed during all of [t0 , t0+(split�time)] then the left end decays,
becomes unhealable, and the germ will decay. Suppose therefore that both
ends are protected by some time t$3<t0+(split�time). If the right end has
level s at this time, then the germ has the desired size, too.

Suppose the germ at the time t$3 has size <2sB and the right end has a
lower level allowing this size. If the left end is younger than the computation

248 Ga� cs

start then the computation would never allow it to switch to a higher level
with this small size, so the size 2sB must be reached at some time t3 . If it
is older than the computation start then (unless an end becomes exposed
and the germ dies on that account) the age advances quickly to the new
work period, and the whole germ obtains the new, higher level. If the germ
is still small its right becomes exposed and then the whole germ will be
wiped out.

Let us follow the development of the germ from t3 forward. If the left
end survives then the germ survives till time t1 and we are done. If the left
end will be destroyed by a cell c2 with higher level then we are done.

The last possibility is that the left end will be destroyed by an active
cell c4 on the same level. Let us construct a path P2 backward from c4 in
a way similar to P1 . By the reasoning of part 1 above we arrive at a time
t5 at which P2(t5) is a leader and the germ has size �2s.

Following the development of this (active) germ forward, its left end
either survives or will be killed by a cell c2 of level >s (in which case we
are done, having found c2). If the left end survives then the germ of c4 kills
the germ of c1 , growing over at least 2s killed cells. (It is easy to see that
new germ cells arising in place of the killed ones do not have sufficient time
to reach level s and are therefore no obstacle to this growth.) This creates
a germ of size �2s+1 whose level will increase after its next computation
notices this. All this happens within at most 2 work periods of the germ
of c4 . K

Lemma 18.7 (Level Increase). For a level s�0, integers n>1,
r�3 } 2sB, some site x0 , some rational time t0 , with c0=(x0 , t0), let

d1=d1(s)=3U(s) p1 ,

L0=1 (x0 , 3 } 2s*B),

I0=1 (L0 , 3QB),

G0=[t0&2 } 2s{1 , t0],

G1=[t0&3Tv, t0],

H1=[t0 , t0+nd1Tv].

Assume

nd1Tv<Tv*. (18.2)

249Reliable Cellular Automata with Self-Organization

Let G0 be the event that I0_(G0 _ H1) is damage-free, I0_G1 is blue, and
c0 has level s. Let H1 be the event that L0_(G1 _ H1), is blue and contains
a cell of level s+1. Then there is a constant }1>0 such that the probability
of cH1 & G0 is at most e&}1n. Moreover, this estimate is also understood
in the sense of an injective canonical simulation.

Proof.

1. All cells in L0_H1 are blue.

Proof. Non-blue germ cells cannot arise in a blue area. If a non-blue
non-germ cell would occur it could be attributed to a full non-blue colony.
It takes two full consecutive colony-occupations to reach into L0 from out-
side I0 , and this takes at least Tv* time units which is, by the assumption
(18.2), more than our total time.

Lemma 18.6 shows that, in the absence of damage, either the conclu-
sion of the present lemma holds or c0 is part of a germ of size at least 2s,
without exposed edges. Let c1=(x1 , t0) be the left endcell of this germ.

2. The following holds during

J1=[t0 , t0+d1 Tv]:

either a cell with level >s occurs in 1 (x1 , 2s+1B) or a leader cell
c2=(x2 , t2) with level s occurs in [x1+2sB, x1+2s+1B&]. In the latter
case, at time t2 , all cells between x1 and x2 belong to the germ of c1 , with
no place left for cells between them.

Proof. If c1 is killed during [t0 , t0+2U(s) {1] from the left by a
higher-level cell then we are done. Suppose that it will be killed by an
active cell c2 of the same level. Then Lemma 18.6 (Germ Attribution)
implies that c2 is contained in a germ without exposed edges, hence of size
�2s. This germ conquers the area of the germ of c1 within the next
2U(s) {1 time units, and creates a cell of level s+1, which is one of the
desired outcomes.

Suppose that this does not happen. If the growth of the germ of c1 will
not be held up then it will create a cell of level s+1 within 2U(s) {1 time
units. It can be held up only by a cell of higher or equal level. A cell of
higher level would give what is required: suppose that this does not happen.
If it is held up by a cell of the same level, then unless this cell is a leader
it decays within time {1 . Therefore the growth succeeds unless a leader cell
c2 of the same level is in the way and all cells between x0 and x1 belong to
the germ of c1 , with no place left for cells between them.

250 Ga� cs

3. Let t3=t2+d1 Tv, J2=[t2 , t3]. Let J1(t2) be the event that
Level(x1 , t2)=s, there is a leader cell c2=(x2 , t2) of level s in [x1+2sB,
x1+2s+1B&], and at time t2 all cells between x1 and x2 belong to the
germ of c1 , with no place left for another cell. The probability that
G0 & J1(t2) holds and no cell of level >s occurs during J2 in 1 (x1 , 2s+1B)
is at most

1&(0.5&=$)3.

Proof. If x1 will be killed from the left during J2 then we will be done
by the same reasoning as in part 2 above. Suppose that this does not happen.

Suppose that that x2 is the later one among x1 and x2 to make a work
period transition after t2 , at time v2 . Let v3 be its next work period transi-
tion. Let u2 be the last work period transition time of x1 before v2 and
u3 , u4 the next work period transitions of x1 . Let J2(t2) be the event that
the coin tosses at time u2 , u3 make x1 active and the coin toss at time v2

makes x2 passive.
Suppose now that x1 is the later one to make its first transition after

t2 , at time u3 . Let u4 be its next work period transition. Let v3 be the last
work period transition of x2 before u3 and v4 its next work period transi-
tion. Let J2(t2) be the event that the coin tosses at time v3 , v4 make x2

passive and the coin toss at time u3 makes x1 active.
The randomization part of the Computation Property implies that, in

the absence of damage, the probability of J1(t2) & cJ2(t2) in both cases is
at most 1&(0.5&=$)3. Let us show that in both cases if J1(t2) & J2(t2)
holds then Level(x1 , u4)=s+1, i.e., the germ of x1 will overrun the germ
of x2 while it is passive.

In the first case, suppose that the work period [v2 , v2] of x2 covers the
work period [u3 , u4] of x1 . Then x1 certainly has sufficient time to over-
run. If [v2 , v2] does not covers [u3 , u4] then it is divided between [u2 , u3]
and [u3 , u4], therefore x1 will have sufficient time in one of these work
periods for the overrun. The reasoning is analogous in the other case.

Repeated application of the above reasoning gives the probability upper
bound (1&(0.5&=$)3)n&1. Indeed, we reason about n disjoint windows
(separated by the times t2 , t3 , t4 ,... where ti+1=t i+d1Tv). If J2(t2) fails then
J1(t3) still holds in the window between t3 and t4 , so the reasoning is
applicable to this new window, etc. The probability bounds will multiply
due to the disjointness of the windows. K

Recall the definition of l in (18.1).

251Reliable Cellular Automata with Self-Organization

Lemma 18.8 (Birth). For integer n>1, and c0=(x0 , t0), let

d2=120p2
1 *Q,

I0=1 (x0 , 33QB),

Ll =1 (x0 , 30QB),

G0=[t0&Q{1 , t0],

G1=[t0&3Tv, t0],

Hl =[t0 , t0+nd2Tv].

Let G0 be the event that I0_(G0 _ H l) is damage-free, and I0_G1 is blue.
Let Hl be the event that Ll_(G0 _ H1) contains a big blue cell.

Assume

nd2Tv<Tv*. (18.3)

There is a constant }1>0 such that the probability of cHl & G0 is at most
le&}1n. Moreover, this bound is also understood in the sense of an injective
canonical simulation.

Proof. Repeated application of Lemma 18.7 (Level Increase). Notice
that

:
0�s<l

d1(s)=3p1 :
0�s<l

U(s)=12p2
1 * :

0�s<l

2s�24p2
1 *2l<120p2

1*Q=d2 .

For level s�0, let

Ls=1 (x0 , 6 } 2sB),

ts=t0+24np2
1*Tv2s.

Then ts=ts&1+nd1(s) Tv for s>0. Let Hs be the event that a cell of level
s appears in Ls before time ts . The blueness of I0 implies H0 . Repeated
application of Lemma 18.7 (Level Increase) shows that the probability of
cHs & Hi for i<s is at most e&}1n for an appropriate constant }1 . From
here, we obtain the required upper bound on the probability of non-
birth. K

Proof of Lemma 10.2. Let ' be a trajectory of a medium Mk of our
amplifier and '*=8k*('). We will use the notation Q=Qk , etc. Let us
define some quantities with the absolute constants C0 , C1 , C2 , }1 that will
be defined later.

252 Ga� cs

D1=C1 B,

D2=C1 QB,

O1=C2 Tv*,

q1=(24C1Q+3C2 U+1) =,

q2=8(C1 Q)2 _2,

q3=e&}1U�QC1 �33,

_$=q1+q2+q3 .

Our goal is to show that for every time v0 , if ' is (D1 , _)-blue at time v0 ,
then '* is (D2 , _$)-blue at time v0+O1 . Then we will be done since (10.3)
implies _$�_k+1 .

As mentioned at the beginning of Section 11, the simulation .k*
consists of two parts: the simulation of Mk+1 by a medium M$k of reach 2,
and the simulation of M$k by Mk as shown in Theorem 8.10.

1. We will concentrate on the self-organization from M$k to Mk+1 .

The self-organization from Mk to M$k is similar but much simpler, so
we omit it (it refers to the proof of Theorem 8.10).

We will use the inequalities

Tv*�Tv*�3, (18.4)

Tv*�Tv<2U, (18.5)

where (18.4) is the same as (9.7) and (18.5) follows from (9.5). Let v0 be
a time, and let J2 be a space interval of length D2 . Let

d2=120p2
1 *Q,

J0=1 (J2 , D2),

J$0=1 (J2 , D2&B),

G0=[v0&Q{1 , v0],

G1=[v0&5Tv, v0],

H0=[v0 , v0+O1],

H1=[v0 , v0+Tv*].

253Reliable Cellular Automata with Self-Organization

Assume that ' is (D1 , _)-blue at time v0 . Let E1 be the event that there is
no damage in J$0_(G0 _ H0). The Restoration Property gives the upper
bound

8
3D2

B
O1+Q{1

Tv
=�(24C1 Q+3C2U+1) = (18.6)

on the probability of cE1 , where we used (18.4), (18.5).
Let E2 be the event that there is a subinterval J1 of J0 of size 2.5D1

such that (J0"J1)_G1 is blue.

2. The probability of E1 & cE2 is upper-bounded by

(D2 �B)2 _2
1�8(C1Q)2 _2

1 (18.7)

Proof. The proof is a little similar to the proof of Lemma 8.4, only
simpler. If

(iD1 �2+[0, D1&]) & J0_G1

is blue for all i # Z then clearly J0_G1 is blue. For some i, j with |i& j |�4,
let Fi, j be the event that this set is not blue, for either i or j. The blueness
of ' at time v0 implies the upper bound _2 on the probability of Fi, j . The
probability that there is an i, j such that Fi, j holds is at most 8(D2 �B)2 _2.
If there is no such pair i, j then it is easy to see that E2 holds.

Under condition of E1 & E2 , let J1 be the subinterval introduced in the
definition of E2 . Let

I0, i=1 (66QBi, 33QB).

Let E3 be the event that for all i such that I0, i/J$0 "J1 the set
I0, i_(G0 _ H1) contains a big blue cell. With n<Tv*�(d2 Tv), Lemma 18.8
(Birth) gives the upper bound

log(5Q) e&}2 n D2

33QB

for an appropriate constant }2 , on the probability of E1 & E2 & cE3 . Using
(18.4), (18.5) and (9.16), we can compute a constant }1 for upperbounding
the above by

e&}1U�QC1�33. (18.8)

254 Ga� cs

We will show that under condition E1 & E2 & E3 , the trajectory '* is blue
over

A0=J2_[v0+O1&5Tv*, v0+O1].

3. Assume that J1 is disjoint from 1 (J2 , D2 �2).

3.1. 1 (J2 , 2QB)_H0 contains no non-blue cell.

Proof. Assume that, on the contrary, it contains such a cell. Let us
build a path of ancestors from this cell. This path cannot end in a birth
inside 1 (J2 , D2 �2&2B) since Lemma 18.1 (Lasting Control) implies that
no birth takes place there. Let us show that the path will not leave this set
either. We will show that it does not leave on the right. For this, whenever
we have a choice between father and mother, we build the path to the left.
This way, the path only moves to the right when the cell is obtained from
its mother by growth or end-healing. Once the backward path moved into
the originating colony of a growth it will stay there at least until the begin-
ning of the work period before it can move right again. It needs therefore
at least (i&1) Tv* time units to move over i colonies, and its total displace-
ment will be at most QB(1+O1 �Tv*). For this to be smaller than the dis-
tance of the complement of 1 (J2 , D2 �2&2B) from 1 (J2 , 2QB), we need

QB(1+O1 �Tv*)<D2 �2&2QB&2B.

Rearranging and using Tv*�Tv*�3 from (9.7) show that this is satisfied if

2(4+3C2)<C1 . (18.9)

Therefore the path never leaves 1 (J2 , D2 �2&2B): this is impossible since
the path is not blue but the set it is in is blue at time v0 .

Let x # J2 : we will show that x becomes controlled in '* at some time
before v0+O1&5Tv*. Then Lemma 18.1 will imply that it stays controlled
until v0+O1 and part 3.1 above shows that it is actually blue.

Let i be such that x # I0, i . Event E3 implies that I0, i (G0 _ H1) contains
a big blue cell (y, t). This cell is within distance 66QB from x, say, to the
left. As soon as it arises it begins to create a right neighbor, which also
creates a right neighbor, etc., until the chain either reaches x or will be
prevented by another blue cell z within distance QB on the right. In the
latter case, we continue from z, and see that the chain controls x by time
t+67Tv*: hence we are done if

C2�73.

255Reliable Cellular Automata with Self-Organization

4. Assume that J1 intersects 1 (J2 , D2 �2).

4.1. There are no non-germ non-blue cells in

1 (J2 , 2QB)_[v0+Q{1 , v0+O1].

Proof. The size of J1 is 2.5D1<QB according to our assumption
about Q. Therefore if it has any non-blue non-germ cells at time v0 then
these cells are in domains with an exposed edge and will decay within Q{1

time units. It can be seen just as in part 3.1 above that non-blue non-germ
edges don't have time to grow in from outside 1 (J2 , D2).

Non-blue germ cells in J1 may also begin to grow to the right. But
within 5 cell widths, they meet an existing blue cell x, as seen in part 1 of
the proof of Lemma 18.1 (Lasting Control). x will not be erased by a non-
blue germ cell on the left. It will not be erased by a germ cell on the right
either since germ cells erase other germ cells only in the right direction. It
might be erased by a non-germ cell y on the right, that is about to create
a left adjacent neighbor to itself. Cell y (or, even the neighbor y&B it
creates) will then be the next obstacle and it can only be eliminated in a
similar way. The time between these successive eliminations (except
possibly between the first two) is at least Tv* since for the next occurrence
of such an event, we must wait for the colony in question to die and for
a new colony to overtake and start growing a left extension. Therefore the
total number of cells that can be added to the non-blue germ in this exotic
way is at most O1 �Tv*+2<3C2+2 (using Tv*Tv*<3 again), which still
leaves it a germ if

C0>3C2+2. (18.10)

Let x # J2 : we will show as in 4 above that x becomes controlled in '*
at some time before v0+O1&5Tv*.

Let I0, i be closest possible to x while disjoint from that J1 . Event E3

implies that I0, i (G0 _ H1) contains a big blue cell (y, t). This cell is within
distance

(1.25) } D1+2 } 66QB=1.25C1B+132QB

from x, say, to the left. As soon as it arises it begins to create a right
neighbor, which also creates a right neighbor, etc., until the chain either
reaches x or will be prevented by another blue cell z within distance QB
on the right. In the latter case, we continue from z, and see that the chain
controls x by time t+133Tv*: hence we are done if

C2�139.

256 Ga� cs

We have shown that the probability that '* is not blue over A0 is at
most _$. We bounded it, referring only to events within a window with
space projection J0 . It follows that for a group of m disjoint space transla-
tions of this window, the probability bounds that '* is not blue over any
of the corresponding translations of A0 , is bounded by _$m. K

19. SOME APPLICATIONS AND OPEN PROBLEMS

19.1. Non-Periodic Gibbs States

Consider spin systems in the usual sense (generalizations of the Ising
model). All 2-dimensional spin systems hitherto known were known to
have only a finite number of extremal Gibbs states (see, e.g., ref. 1): thus,
theoretically, the amount of storable information on an n_n square lattice
did not grow with the size of the lattice. In 3 dimensions this is not true
anymore, since we can stack independent 2-dimensional planes: thus, in a
cube Cn of size n, we can store n bits of information. More precisely, the
information content of Cn can be measured by the dimension of the set of
vectors

(+[_(x)=1] : x # Cn)

where + runs through the set of Gibbs states. This dimension can be at
most O(nd&1) in a d-dimensional lattice, since the Gibbs state on a cube is
determined by the distribution on its boundary. The stacking construction
shows that storing 0(nd&2) bits of information is easy. We can show that
0(nd&1) is achievable: in particular, it is possible to store an infinite
sequence in a 2-dimensional spin system in such a way that n bits of it are
recoverable from any n sites with different x coordinates.

For this, we apply a transformation from ref. 15 (see also ref. 3):
a probabilistic cellular automaton M in d dimensions gives rise to an equi-
librium system M$ in (d+1) dimensions. Essentially, the logarithms of the
local transition probabilities define the function J and space-time con-
figurations of M become the space-configurations of M$. Non-ergodicity
of M corresponds to phase transition in M$. In the cellular automaton of
Theorem 5.6, each infinite sequence * gives rise to a space-time configura-
tion storing the bits of * in consecutive cells. Now, each of these space-time
configurations gives rise to a separate Gibbs state belonging to one and the
same potential.

Let us note that though the Gibbs system is defined in terms of an
energy function H(_), it is not helpful to represent this energy function in
terms of a temperature T as H(_)�T. The reason is that the individual terms

257Reliable Cellular Automata with Self-Organization

of H(_) do not depend linearly on the error probability = (or any function
of it). In fact, we believe it can be proved that if an artificial T is introduced
(with T=1 for a certain sufficiently small value of =) then a slight decrease
of T destroys the phase transition.

19.2. Some Open Problems

19.2.1. Turing Machines

It is an interesting question (asked by Manuel Blum) whether a
reliable Turing machine can be built if the tape is left undisturbed, only the
internal state is subject to faults. A construction similar to reliable cellular
automaton seems to be possible. It is not known whether there is a simpler
construction or, whether there is a way to derive such a machine from
reliable cellular automata.

19.2.2. Relaxation Time as a Function of Space Size

Consider now Toom's medium as a typical example of a medium non-
ergodic for m=�. It follows from Toom's proof that, for small enough
fault probability =, we have limm � � rm(0, 1�3)=�, i.e., the increase of
space increases the relaxation time (the length of time for which the rule
keeps information) unboundedly. The speed of this increase is interesting
since it shows the durability of information as a function of the size of the
cellular automaton in which it is stored. Toom's original proof gives only
rm(0, 1�3)>cm for some constant c. The proof in ref. 5, improving on
ref. 14, gives rm(0, 1�3)>ecm for some constant c, and this is essentially the
meaning of saying that Toom's rule helps remember a bit of information
for exponential time.

So far, the relaxation times of all known nontrivial non-ergodic media
(besides Toom's, the ones in refs. 10 and 11) depend exponentially on the
size of the space. It is an interesting question whether this is necessary. In
a later work, we hope to show that this is not the case and that there are
non-ergodic media such that rm(n, 1�3)<mc holds for all n, for some con-
stant c. The main idea is that since the medium will be able to perform an
arbitrary reliable computation this computation may involve recognizing
the finiteness of the space rather early (in time mc) and then erasing all
information.

19.2.3. Relaxation Time as a Function of Observed Area

Lemma 5.5 seems to suggest that the issue of information loss in a
cellular automaton is solved by the question of mixing for m=�. This is
not so, however: as noted together with Larry Gray, Leonid Levin and

258 Ga� cs

Kati Marton, we must also take the dependence of rm(n, $) on n into
account. As time increases we may be willing to use more and more cells
to retrieve the original information. Even if r�(n, $)<� for each m, we
may be satisfied with the information-keeping capability of the medium if,
say, rm(n, 1.9)>ecn for some constant c.

In some mixing systems, the dependence of rm(n, $) on n is known.

Example 19.1 (The contact process). The contact process is a
one-dimensional CCA as defined in Subsection 2.4. Let us note that this
process is not noisy: not all local transition rates are positive. The process
has states 0, 1. In trajectory '(x, t), state '(x, t)=1 turns into 0 with
rate 1. State '(x, t)=0 turns into 1 with rate *('(x&1, t)+'(x+1, t)). It
is known that this process has a critical rate *c # [0+, �&] with the
following properties.

If *�*c then the process is mixing with the invariant measure concen-
trated on the configuration ! with !(x)=0 for all x. If *>*c then the pro-
cess is non-ergodic.

If *<*c then it is known (see Theorem 3.4 in Chapter VI of ref. 20)
that the order of magnitude of r�(n, $) is log n.

If *=*c then the convergence is much slower, with an order of
magnitude that is a power of n (see Theorem 3.10 in Chapter VI of refs. 20
and 6).

We believe it possible to construct a medium that is mixing for m=�
but loses information arbitrary slowly: for any computable function f (n),
and a constant c there is a medium with

rm(n, 1.9)> f (n) 7 ecm

for finite or infinite m. Notice that this includes functions f (n) like ee e n

.
Such a result could be viewed as an argument against the relevance of the
non-ergodicity of the infinite medium for practical information conserva-
tion in a finite medium. The construction could be based on the ability to
perform arbitrary computation reliably and therefore also to destroy
locally identifiable information arbitrarily slowly.

ACKNOWLEDGMENTS

Partially supported by NSF Grant CCR-920484. The author also
thanks the IBM Almaden Research Center and the Center for Wiskunde
and Informatica (Amsterdam) for their support during the long gestation
of this project.

259Reliable Cellular Automata with Self-Organization

REFERENCES

1. M. Aizenman, Translation invariance and instability of phase coexistence in the
two-dimensional Ising system, Comm. Math. Phys. 73(1):83�94 (1980).

2. C. H. Bennett, G. Grinstein, Yu He, C. Jayaprakash, and D. Mukamel, Stability of
temporally periodic states of classical many-body systems, Phys. Rev. A 41:1932�1935
(1990).

3. C. H. Bennett and G. Grinstein, Role of irreversibility in stabilizing complex and non-
ergodic behavior in locally interacting discrete systems, Phys. Rev. Lett. 55:657�660
(1985).

4. E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical
Plays (Academic Press, New York, 1982).

5. P. Berman and J. Simon, Investigations of fault-tolerant networks of computers, in Proc.
20th Annual ACM Symp. on the Theory of Computing (1988), pp. 66�77.

6. C. Bezuidenhout and G. Grimmett, The critical contact process dies out, Ann. Probab.
18:1462�1482 (1990).

7. R. E. Blahut, Theory and Practice of Error-Control Codes (Addison-Wesley, Reading, MA,
1983).

8. P. G. de Sa� and C. Maes, The Ga� cs�Kurdyumov�Levin automaton revisited, J. Stat.
Phys. 67(3�4):607�622 (1992).

9. R. L. Dobrushin and S. I. Ortyukov, Upper bound on the redundancy of self-correcting
arrangements of unreliable elements, Problems of Inform. Trans. 13(3):201�208
(1977).

10. P. Ga� cs, Reliable computation with cellular automata, J. Comput. Syst. Sci. 32(1):15�78
(1986).

11. P. Ga� cs, Self-correcting two-dimensional arrays, in Randomness in Computation, Silvio
Micali, ed., Advances in Computing Research (a scientific annual), Vol. 5 (JAI Press,
Greenwich, CT, 1989), pp. 223�326.

12. P. Ga� cs, Deterministic parallel computations whose history is independent of the order of
updating, www.arxiv.org�abs�cs.DC�0101026

13. P.r Ga� cs, G. L. Kurdyumov, and L. A. Levin, One-dimensional homogenuous media dis-
solving finite islands, Problems of Inf. Transm. 14(3):92�96 (1978).

14. P. Ga� cs and J. Reif, A simple three-dimensional real-time reliable cellular array, J. Comput.
Syst. Sci. 36(2):125�147 (1988).

15. S. Goldstein, R. Kuik, J. L. Lebowitz, and C. Maes, From PCA's to equilibrium systems
and back, Commun. Math. Phys. 125:71�79 (1989).

16. L. F. Gray, The positive rates problem for attractive nearest neighbor spin systems on Z,
Z. Wahrs. verw. Gebiete 61:389�404 (1982).

17. L. F. Gray, The behavior of processes with statistical mechanical properties, in Percolation
Theory and Ergodic Theory of Infinite Particle Systems (Springer-Verlag, 1987),
pp. 131�167.

18. G. Itkis and L. Levin, Fast and lean self-stabilizing asynchronous protocols, Proc. of the
IEEE Symp. on Foundations of Computer Science (1994), pp. 226�239.

19. G. L. Kurdyumov, An example of a nonergodic homogenous one-dimensional random
medium with positive transition probabilities, Sov. Math. Dokl. 19(1):211�214 (1978).

20. T. M. Liggett, Interacting Particle Systems, Grundlehren der mathematischen Wissen-
schaften, Vol. 276 (Springer Verlag, New York, 1985).

21. J. Neveu, Bases mathematiques du calcul des probabilite� s (Masson et Cie, Paris, 1964).
22. K. Park, Ergodicity and mixing rate of one-dimensional cellular automata, Ph.D. thesis,

Boston University, Boston, MA 02215 (1996).

260 Ga� cs

23. N. Pippenger, On networks of noisy gates, Proc. of the 26th IEEE FOCS Symposium
(1985), pp. 30�38.

24. C. Radin, Global order from local sources, Bull. Amer. Math. Soc. 25:335�364 (1991).
25. D. A. Spielman, Highly fault-tolerant parallel computation, Proc. of the 37th IEEE FOCS

Symposium (1996), pp. 154�163.
26. T. Toffoli and N. Margolus, Cellular Automata Machines (MIT Press, Cambridge, 1987).
27. A. L. Toom, Stable and attractive trajectories in multicomponent systems, in Multicompo-

nent Systems, R. L. Dobrushin, ed., Advances in Probability, Vol. 6 (Dekker, New York,
1980) [Translation from Russian], pp. 549�575.

28. B. S. Tsirel'son, Reliable information storage in a system of locally interacting unreliable
elements, in Interacting Markov Processes in Biology, V. I. Kryukov, R. L. Dobrushin, and
A. L. Toom, eds. (Scientific Centre of Biological Research, Pushchino, 1977), in Russian.
Translation by Springer, pp. 24�38.

29. J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from
unreliable components, in Automata Studies, C. Shannon and McCarthy, eds. (Princeton
University Press, Princeton, NJ, 1956).

30. W. Wang, An asynchronous two-dimensional self-correcting cellular automaton, Ph.D.
thesis, Boston University, Boston, MA 02215 (1990). Short version: Proc. 32nd IEEE
Symposium on the Foundations of Computer Science (1991).

NOTATION

& , 67
? , 65
b , 79
;, &, 127
6, 7, 54
V, *, 75
'(c, a&), 55
S .F, 82
s(D).F, 82
s .F, 56
:=, 126
:=p , 167
P, 75
/, 67

a <
R

b, 178
?, !, ?!, 126
[a+, b], 54
&S&, 56

a&1(K), a1(K), 114
ai , 191
ak , 80
A, A(W), At , 59
A_ , 108
(:, V t('), _), 108

(:, V), 106
:, 213
:(K$, K"), 110
:(K, D, k, j), 115
:i , 85
ACA, 120
Active, 247
Addr, 63, 64
Age, 72
Age1 , 222
All, 56
AMed, 66
amod, 121
Animate, 181
Arbitrate, 179

�Argm , 134, 220

b(:), 106
B, 67
B$k , 87, 150
Bk , 81, 148
Bad, 137
Becoming, 180
Birth, 177
Buf, 57

c(K$, K"), 110
C$k(y), 87
Ck(x), 81
Cn , 257
C, 55
Cm , 99
C, 64
C(y), 164
c(K$, K"), 110
CA(Tr, B, T, C), 68
CA(Tr, C), 55
CA=(Tr, C), 61, 68
Capk , 148
CCA(R, C), 61
Channel, 168
check�retrieve, 233
Check�vacant, 224
Check0 , Check1 , 216
Ck�res, 233
Ck�resn , 217
Code�size, 215
Color, 141
Compute, 169, 221
(compute�start), 169, 189
(compute�time), 225

261Reliable Cellular Automata with Self-Organization

cond, 126
Configs, 66
Controlk , 169, 216, 231
Copy, 131
Cpt, 131
Create, 177
Creatingj , 168, 177

�Creatingj , 224
(crit), 189, 214
Cur, 121, 166

d n(+, &), 99
dj , 92
Dn

m(t), 99
$, 61
Damage, 137
Decay, 171, 172, 192
Decode, 215
Det, 60, 116
Die, 176
Doomed, 168
Dying, 176

e1 , 226
ej , 175
E+ f, 59
=, 52, 137
=k , =$k , ="k , 148
Edgej (x), 132, 231
Encode, 215

�Encodedn , 217
End, 169
Endi , 222, 223
End�corrj (x), 184
End�legal, 223
(end�period), 189, 222
'*, 69, 73
Eval, 131, 219
Evols, 66
Extj , 182
Extend, 169, 182

F(I), 128
F (j), 231
F j, 126
F k(9), 84
F k

j , 91
.

**
, 75

.
*

(!), .*(!), 68, 69
.

*
, .

*
, 69

.k*
, 80

8, 74
8*, 73
8k , 153
Fickle, 231
Find�end, 169, 222
Finish, 169
finish, 223
for, 127
Frame, 148
Freeze, 177
Fromaddr, 132
Fromnb, 132, 232
Frozen, 172
Fut, 166

g(:, V, '), 106
G('), 244
Gk, 93
#, 82
1 (I, d), 159, 242
1 (*; k, 9), 89
1 (u1 ; k, 9), 84
Germ, 168
(germ�end), 171, 189, 223
(germ�grow�end), 189
get, 231
GF(2l), 85
Grow, 169, 183
(grow�end), 189
(grow�start), 189
(grow�start), (grow�end), 169
Grow&step, 182
Growingj , 168, 182, 224
Growthj , 168
Guard k, 147, 153, 164

hk , 90
H(_), 257
H k, 90
/(x, A), 120
Heal, 172, 173, 184
Hold, 72, 170, 214

@Q , 65
Idle, 169

(idle�start), 169, 189
Inbuf, 57
Info, 64, 130

�Info, 128, 132
Info.Main, Info.Redun, 164, 212
Init(*), 103
Input, 56
Int�corr(x), Int�corr$(x), 184
(interpr�coe), 129

�Interpr, 134, 220
Interpr, 129

k� , 230
k(:, i), 111
K(N), 81
K, 110
K� (x, t, '), 110
Kind, 167
Kindj , 178

l, 85, 247
L(!), 120
*, 166, 259
Latent, 168
legal, 58
let, 128
Level, 247
loc, 131
loci , 215
log, 54

mk , 90
M$, 61
Mk , 52, 64
+, 59
+t, 96
Mail, 56
Mail�ind, 132, 230
Mail�used, 232
Main�bit, 62
Maj, 216
March, 128, 172
March1 , 222
Med, 106
Member, 168
Memory, 56
Move�mail, 133, 233

262 Ga� cs

n(:), 111
nk , 90
N, 85
&(s), 96
&s , 99
&k , 148
Nb�ind, 132, 141
nearly�equal, 216
New�level, 248
Newborn, 142
Normal, 132

o$k , 87
ok , 81
0, |, 59
0, 257
Outbuf, 57
Output, 56

pi , 166, 174, 189
pk , 91
P, 96, 212
P(t), 190
Pm , 99
P(E, r), 109
P(s, (r&1 , r0 , r1)), 59
?s , ? t , 55
Param, 129

�Parami , 220
PCA(P, C), 59
PCA(P, B, T, C), 68
peer(k, j), 132, 231
pfor, 133
Pointer, 57
Portm , 233
post, 231
Post�mail, 232
Prev, 121
Prim�var, 115
Prob, 59

�Prog, 134
Prog, 71
prog, 124
Propag�control, 231
9, 83, 153
Purge, 172, 185

qk , 84
Q, 63
Qk , 80, 148

rm(n, $), 99
R, 98
R(K, r), 110
R(s, r), 60
R0 , 148
*k, 88
*j , 92
Rand, 60, 116
Rd�trans, 147
recheck�1, 216
Refresh, 168, 216
(refresh�time), 168
repeat, 127
Retr�cycle, 234
Retrieve, 131, 169, 234

�Retrievedm , 131, 219, 233

�Retrievedm .Status, 233
Riderk, 147, 153, 164
Rob, 141

S, 55
Sk , 64, 80
Sn , 96
_, 257
70 , 75
Sib, 171

�Sim�outputi , 220
Sim� prog, 136
Source�addr, 219
(split�t), 189
Status, 132
Supp(*), 104
synch�consensus, 223
(synch�start�lb), 189, 223
(synch�time), 222

T, 257
Tv, Tv, 115, 148
T, 106
{(x, t), 120
{i , 179
Target�addr, 134
�j (x), 125, 140
Tr , 141
Tr(X; s, t), 124
Tr(!, E), 120
Tr, Tr, 55

Tr(w), 58
TrQ(u, v, w), 70
Trajs, 66
Trans� prog, 130

ui , 191
U, 63
U(s), 247
U(t, '), 120
Uk , 148
Undef, 132
Univ, 125
Update, 131
Update�loc�maint, 216, 224

V, 137
V$, 165
V*, 73
V t('), 108
V, 55
Vac, 66
Vacant�str, 215
Visible(k, N), 88
Votei , 216

w, 57
W0(x, a), W1(x, a), 143
Wait, 166
(wake), 190
Work, 56
Write, 129

x, 125
x*, x*0, 230
X(y, i; k, 9), 87
Xj (y, 9), 92
!(x), 55
! i

k , 81
!

*
, !*, 66

Xposedj , 175

Yk , 119
', 52
'(x, t), 55
'*, 52

Zm , 54

263Reliable Cellular Automata with Self-Organization

INDEX

accepted by decoding, 66
active level, 93
address, 63
affecting

directly, 165
via neighbors, 166

age
effective, 120

aggregation, 65
amplifier, 74

broadcast, 153
error-correcting, 77
frame, 146, 150

broadcast, 147
initially stable, 77
self-organizing, 160

atomicity, 144
attribution, 205
Property

Computation, 137
Restoration, 137

bandwidth, 57
birth, 159
blue, 159

trajectory, 160
body, 67

space-time, 67
broadcast, 77, 83

capacity, 56
cell, 67

channel, 168
dead, 168
doomed, 168
expansion, 175
exposed, 171
father, 185
frozen, 172
germ, 168
growth, 168
inner, 167
kind, 167
latent, 168
live, 168
member, 168
mother, 177, 185
outer, 167

strength, 168
vacant, 168

cellular automaton
deterministic, 55, 68
probabilistic, 59
totally asynchronous, 120

code, 64
bits

error check, 85
information, 85

block
overlap-free, 68

composition, 79
error-correcting, 85
hierarchical, 80
limit, 90

approximation, 90
linear, 85
Reed�Solomon, 85

colony, 63, 128
base, 63
endcell, 175
full, 172
in a cellular medium, 68

computation
result, 124
size, 102

condition
local, 106

disjoint, 107
random, 107
random-stopping, 108

type, 106
Condition

Address and Age, 172
Animation, 185
Cling to Life, 142
Creation, 142
Dooming, 176
Freeze, 177
Killing, 185
Latent Cells, 168
Outer Info, 173
Time Marking, 142
Time Stability, 149
Waiting, 167

configuration, 55, 67
input, 103

264 Ga� cs

lattice, 68
space-time, 55, 67, 68

random, 59
consistent

space-, 171
contact process, 259
control

delegation, 160, 246
lasting, 159, 243

controlling, 82, 159, 242
correction

end, 183
internal, 183
near-end, 183

creation, 159
creator, 142

potential, 142
critical rate, 259
cut, 171

damage, 137
rectangle, 165

extended, 166
healing wake, 228
wake, 191

damage-free, 137
deviation, 101
domain, 172

multi-, 176
don't-care symbol, 75

edge
exposed, 175

weak, 200
protected, 175

ergodic, 97
error, 217

correction, 64, 75
event function, 59

field, 56
broadcast, 84
identification, 83
locally maintained, 168
rider, 147
shared, 84

guarded, 93
primitive, 84

fitted sequence, 80

forgetful
strongly not, 101
uniformly, 100

Galois field, 85
gap, 192

bad, 199
right-age, 192

germ
active, 247
computation, 247
exposed, 247
growth, 247
leader, 247
level, 247
passive, 247

hard-wiring, 95

interacting particle system, 60
invariant histories, 121
Ising model, 257

killing, 168

Lemma
Age Check, 233
Amplifier, 153
Ancestor, 174, 191
Animation Support, 181
Bad Gap Inference, 174, 200
Bad Gap Opening, 200
Birth, 252
Cover, 204
Creation, 179
Crossing, 190
Exposing, 188
Germ Attribution, 248
Glue, 187
Growth, 239
Healing, 209
Initially Stable Amplifier, 77
Large Progress, 208
Legality, 174
Level Increase, 249
Parent, 185
Present Attribution, 174, 228
Refresh, 217
Retrieval, 235

265Reliable Cellular Automata with Self-Organization

Running Gap, 174
Self-Organization, 160
Simulation Damage Probability Bound, 139
Small Progress, 202

link, 189
location, 128
Lower Bound

Bandwidth, 149, 151
Capacity, 149, 151
Cell Capacity, 135
Colony Size, 135
Redundancy, 151
Work Period, 135, 149, 151

marching soldiers, 122, 172
Markov

chain, 60
operator, 96
process, 61

measurable space, 59
measure

invariant, 97
medium, 106

abstract, 66
cellular, 67

constant-period, 68
robust, 136
standard computing, 123
variable-period, 68

primitive, 115
mixing, 97
monotonic output, 103

noisy, 60
non-degenerate, 80

organized into colonies, 63

packet, 212
partners, 177
path

boundary, 200
forward, backward, 190

period
computing, 218
damage-free, 218
dwell, 67

lower bound, 115
expansion, 175
growth, 171

observation, 143
wait, 197
work, 63, 171

boundary, 172
germ, 247
size, 70
transition, 251

perturbation, 61
program

rule, 130
uniform, 147

rectangle process, 108
redundancy

space, 90
time, 105

refreshing step, 168
relatives, 172
relaxation time, 55, 258
remembering, 62
renormalization, 74
rule, 125

default, 125
sub-, 125

self
organization, 105, 118
reference, 129
stabilization, 53

separability, 58
sibling, 171

strong, 200
simulation, 64, 73

block code, 69
canonical, 111

deterministic, 112
injective, 114, 250

local, 73
memoryless, 73
non-anticipating, 73
non-local, 123

site, 55
free, 120
map, 90

sparsity, 102
spin system, 257
standard

alphabet, 75
system of shared fields, 92

266 Ga� cs

state
Gibbs, 257
newborn, 142

canonical, 142
vacant, 67

stopping time, 107
successor, 209
supercolony, 79
support, 104

n-, 172
switch, 55

time, 115

temperature, 257
Theorem

CCA-simulation, 117
Asynchronous Simulation, 121
Basic Block Simulation, 136
Canonical Simulation, 112
Reach Extension, 146
Rule Language, 129

Toom rule, 98, 258
track, 57

mail, 132
trajectory, 59, 66, 108

deterministic cellular automaton, 55, 68
weak, 107

transition function, 55
aggregated, 70
combined, 147
commutative, 121
program of, 124
universal, 71

efficiently, 124
transition matrix, 59
transition rate, 60
translation-invariance, 107
Turing machine, 56, 258

update
age, 169
interval, 169
set, 120

Upper Bound
Complexity, 149, 151
Error, 149

vacant symbol, 66

weak convergence, 96

267Reliable Cellular Automata with Self-Organization

